# IDENTIFICATION OF ELIGIBLE PROJECTS AND DEVELOPMENT OF STANDARDIZED METHODOLOGIES FOR ESTIMATING POTENTIAL EMISSION BENEFITS FOR THE CARBON REDUCTION PROGRAM (CRP) FUNDING

**DATE:** July 26, 2024

TO: Janie Temple TxDOT - TPP

- FROM: Guo Quan Lim, Ph.D. Rohit Jaikumar, Ph.D. Minjie Xu, Ph.D. Tara Ramani, P.E., Ph.D. Madhusudhan Venugopal, P.E. Texas A&M Transportation Institute (TTI)
- SUBJECT: Planned Support Contract No. 21853 Deliverable for Subtask <3.3>

# **1 BACKGROUND**

The Carbon Reduction Program (CRP) established under the Infrastructure Investment and Jobs Act (IIJA) (Public Law 117-58) requires the State Department of Transportation (DOT) to reduce carbon dioxide (CO<sub>2</sub>) emissions from the transportation sector by developing and implementing Carbon Reduction Strategies (CRS) aimed at reducing transportation emissions. To meet this requirement, the Texas Department of Transportation (TxDOT) developed a framework to be applied to infrastructure projects in the state from CRP and other federal program sources to address transportation emissions. Metropolitan planning organizations (MPOs), play an important role in identifying projects and strategies to reduce transportation emissions. The 2023 CRS identified the need to integrate carbon reduction projects and programs into the MPO planning process. In addition, MPOs indicated that the carbon reduction categories



'Advanced Technology' and 'Travel Demand Management' as the most implementable in terms of feasibility and potential carbon emissions reduction benefits.

As part of the technical assistance available through the Air Quality interagency contract (IAC), in FY2023 the Texas A&M Transportation Institute (TTI) study team supported the development of TxDOT's 2023 CRS. TxDOT is required to develop the 2027 CRS that will support statewide and regional efforts to reduce transportation emissions, identify projects and strategies to reduce transportation emissions, support the reduction of transportation emissions in Texas, and be appropriate to the population density and context of Texas. Within the 2023 CRS, there is a wide range of strategies and programs that have been identified as candidates for CRP funding. As projects and programs are implemented, it will be imperative for TxDOT to evaluate how effectively these projects and programs reduce carbon emissions. The 2023 CRS provided a successful effort for TxDOT and has identified many recommendations that could give us a head start for the development of the 2027 CRS.

The objectives of this task include the following:

- Review the most up-to-date Transportation Improvement Plans (TIP) for each of the 25 MPOs within the State of Texas.
- Investigate and document the best means of evaluating data-driven approaches to evaluating carbon reduction strategies.
- Quantify the estimated CO<sub>2</sub> emissions reduction for most of the categories identified in the 2023 CRS using data-driven methodologies that will support and justify carbon reduction strategies chosen for implementation.

# 2 METHODOLOGY

### 2.1 Documentation of CRS in Texas

The TTI study team downloaded and reviewed the latest available TIPs from all 25 MPOs in the state of Texas. Unfortunately, the TIPs do not classify the strategies employed in the projects (i.e., advanced technology, travel demand management, etc.). In addition, emission reduction is not a parameter that needs to be reported in the TIPs. To resolve

this, the TTI study team developed methodologies to filter and reclassify projects by strategy type, which will be discussed in this section, and identified methods to quantify CO<sub>2</sub> emission reduction, which will be discussed in more detail in the following section.

The TIPs from all MPOs are combined to form the Statewide TIP (STIP), which TxDOT amends on a quarterly basis. The TTI study team was able to download a complete list of TIP projects from TxDOT's STIP Data Table dashboard<sup>1</sup>, which was revised in November 2023.

Next, the TTI study team conducted a literature review to identify a list of keywords frequently used to describe certain strategies. In addition to Advanced Technology and Travel Demand Management, the TTI study team also included the Active Transportation category from the 2023 CRS and broke the strategy category down into individual strategies, as shown in Table 1. The individual keywords used to filter the STIP data and classify them are listed in Appendix A.

| Strategies Category      | Strategy                                           |  |  |  |
|--------------------------|----------------------------------------------------|--|--|--|
|                          | Traffic Signal Optimization                        |  |  |  |
|                          | Intelligent Transportation System (ITS)            |  |  |  |
|                          | Real-Time Information and Communication            |  |  |  |
| Advance Technology       | Rail Crossing Traffic Management System            |  |  |  |
| Advance Technology       | Vehicle to Infrastructure (V2I) Communications     |  |  |  |
|                          | Dynamic Freight Routing                            |  |  |  |
|                          | Traffic Management Center (TMC)                    |  |  |  |
|                          | Dynamic Parking Availability Signs and Systems     |  |  |  |
|                          | Intersection Improvements                          |  |  |  |
|                          | Demand Shifting                                    |  |  |  |
|                          | Interchange Improvements                           |  |  |  |
| Travel Demand Management | Increasing Vehicle Occupancy Rates                 |  |  |  |
|                          | Shifting Demand to Nonpeak Hours                   |  |  |  |
|                          | Congestion Pricing                                 |  |  |  |
|                          | Roundabout                                         |  |  |  |
|                          | Bike Lanes                                         |  |  |  |
| Active Transportation    | Visibility Improvement                             |  |  |  |
|                          | Americans with Disabilities Act (ADA) Improvements |  |  |  |

### Table 1. CRS Strategy Categories and Strategies

<sup>&</sup>lt;sup>1</sup> TxDOT's STIP Data Table dashboard, available here:

https://tableau.txdot.gov/views/STIPDashboards/STIPDataTableDashboard, was accessed on June 20<sup>th</sup>, 2024.

Bikeshare and Electric Bikes

## 2.2 Quantification of Emission Reduction

As previously discussed, the MPOs do not need to include emission reduction benefits of the individual projects in their MTP. Thus, the TTI study team needed to identify a methodology to assign estimated CO<sub>2</sub> emission benefits to each project in the STIP, based on limited available information. The TTI study team proposed two methodologies and compared their efficacy to real world examples:

- Using the Congestion Mitigation and Air Quality (CMAQ) projects reported benefits to estimate an average emission benefit baseline for the strategy type,
- Using the Federal Highway Administration's (FHWA's) CMAQ Toolkit or Texas' MObile Source Emission Reduction Strategies (MOSERS) tool to estimate an average CO<sub>2</sub> emission benefit for each strategy type.

The following sections describe each approach in more detail.

### 2.2.1 CMAQ Project Averages

The TTI study team downloaded the latest available CMAQ project list, containing information on awarded CMAQ projects from 1992 through 2023 for all 50 states. The spreadsheet included information on project type, title, description, and emission benefits for volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO<sub>x</sub>), particulate matter (both under 10 microns [PM<sub>10</sub>] and under 2.5 microns [PM<sub>2.5</sub>]), and CO<sub>2</sub> in kg per day (CO<sub>2</sub> was reported in metric tons per day).

First, the TTI study team filtered for strategy keywords (available in Appendix A) in the CMAQ project type, title, description, and additional description columns to categorize the projects into those listed in Table 1. Then, the CO<sub>2</sub> benefits for all projects filtered into each strategy in Table 1 were averaged. To ensure that the emission benefits were estimated using up-to-date methods, the TTI study team filtered out CMAQ projects awarded before 2021, unless they were continuing projects. These averages would then be used to calculate the total emission benefits of STIP projects. For example, if a project in the STIP were categorized into both the ITS and demand shifting categories, the average CO<sub>2</sub> benefits from ITS and demand shifting would be applied, and the total CO<sub>2</sub> benefits would be the sum of both values.

Upon closer inspection of the dataset, the TTI study team found an error in the units for CO<sub>2</sub> Emissions benefit field which is marked as MT/day (metric tons/day). This will make the values very extreme when compared to the emission benefits of other pollutants. For example, a 2022 congestion mitigation project in California's San Francisco Bay area was estimated to produce 1,821 metric tons of CO<sub>2</sub> emission reduction per day, while the other pollutants were around or less than 1 kg per day. While CO<sub>2</sub> emission rates are higher than these pollutants (e.g., based on the emission rate lookup table [ERLT] for an urban restricted access roadway in Dallas in 2022, if the average running speed is 35 mph, the CO<sub>2</sub> emission rate is around 665 grams/mile compared to NO<sub>x</sub>'s 1.3 grams/mile, yielding a 511 times difference), the San Francisco Bay project's difference between its CO<sub>2</sub> and NO<sub>x</sub> emission benefits was about 607,000 times.

The TTI study team believes this may be an input error, as all other pollutants aside from  $CO_2$  were reported in kg per day while  $CO_2$  was reported in metric tons per day. Assuming the  $CO_2$  emissions benefit as kg per day instead of metric tons per day yields a NOx to  $CO_2$  ratio more in line with the ERLT. Upon looking at the individual project reports from the CMAQ website, the  $CO_2$  emission benefits were indeed reported in kg/day. Hence, for determining the  $CO_2$  emission benefits, the values were assumed to be reported in Kg/day.

There were many projects on the CMAQ list which did not report  $CO_2$  emission benefits and many projects where the ratio of  $CO_2$  to CO appears to be vastly out of expected range.  $CO_2$  to CO ratio was chosen to filter the projects from CMAQ as it was the one which had least variance among all the pollutants ratio to  $CO_2$  in ERLT table. The range selected for filtering  $CO_2$  to CO ratio is from 25 to 600, which is in line with the range from ERLT rates. Table 2 summarizes the average emission benefits reported for each of the strategy types from CMAQ project reports.

|                       |               | Projects                                   |                       |                                                       |
|-----------------------|---------------|--------------------------------------------|-----------------------|-------------------------------------------------------|
| Strategy<br>Category  | Strategy<br># | Strategy                                   | Number of<br>Projects | Average CO <sub>2</sub> Emission<br>Benefits (kg/day) |
|                       | 1A            | Traffic Signal Optimization                | 2                     | 721                                                   |
| Advance               | 1B            | ITS                                        | 3                     | 16,468                                                |
| Advance<br>Technology | 1D            | Rail Crossing Traffic<br>Management System | 15                    | 437                                                   |
|                       | 1G            | TMC                                        | 1                     | 232                                                   |
|                       | 2A            | Intersection Improvements                  | 5                     | 728                                                   |

Table 2 Average CO<sub>2</sub> Emission Benefits for Different Strategies from CMAQ Projects

| Strategy<br>Category     | Strategy<br># | Strategy                     | Number of<br>Projects | Average CO <sub>2</sub> Emission<br>Benefits (kg/day) |
|--------------------------|---------------|------------------------------|-----------------------|-------------------------------------------------------|
| Travel Demand            | 2B            | Demand Shifting              | 39                    | 2,201                                                 |
| Management 2C            |               | Interchange Improvements     | 1                     | 643                                                   |
|                          | 3A            | Bike Lanes                   | 25                    | 276                                                   |
| Active<br>Transportation | 3B            | Visibility Improvement       | 1                     | 83                                                    |
|                          | 3C            | ADA Improvements             | 5                     | 305                                                   |
|                          | 3D            | Bikeshare and Electric Bikes | 1                     | 49,076                                                |

### 2.2.2 CMAQ Toolkit & MoSERS Method

Based on the average total project cost of the strategy, as reported for the STIP, the TTI study team conducted a literature review to identify projects of the same strategy type and with a similar project cost to use as a baseline for the MOSERS input. As not all projects listed in the MPOs' TIPs contain detailed information, the TTI study team also reviewed the CMAQ projects and toolkits to fill in the gaps, as well as relied on default values already in the MOSERS tool.

For all strategy types, the TTI study team used the 2023 Dallas area emission rates as the baseline. Also, here is the list of assumptions used to calculate the baseline CO<sub>2</sub> emission benefits. Most of the parameters were held at same level between strategies as much as possible.

- Length of corridor 1 mile
- Number of signalized intersections along the corridor 1
- Existing number of through lanes along the corridor (one direction) 1
- Intersection number of lanes (one direction)
- Major Road:
  - Before 1 Left, 1 right, 2- through
  - o After 2 Left, 1 right, 2- through
- Minor Road:
  - Before 1 Left, 1 right 1 through
  - o After 2 Left, 1 right, 1- through

- Annual average daily traffic (both directions) 10000
- Posted speed limit (before) 40 mph
- Posted Speed (after) 50 mph
- Existing average corridor travel time during peak period (one direction) 10 min
- Existing average cycle length along the corridor -40 s
- All-red time 5 s
- Yellow time 4s
- Average amount of time rail crossing is closed due to train crossing 1 hr/day
- Freight VMT (before) 1000
- Freight VMT (after) 900
- Number of HOV Lanes added 1
- Delay per vehicle
- Peak 30s
- Off-Peak 20s
- Population 100000
- Percent of Cyclists 10%
- Length of Bike Lane 1 mile

Table 3 presents the baseline CO<sub>2</sub> emission benefits (in kg/day) for different transportation strategies categorized under Advance Technology, Travel Demand Management, and Active Transportation. The calculations are based on consistent assumptions such as the CO<sub>2</sub> emission factor, daily traffic volume, reduction in delay, and other relevant data. The MoSERS strategies and the required data for each calculation are also listed for reference.

# Table 3 Baseline CO2 Emission Benefits for Various Strategies Using MoSERSFramework and the data needs for each strategy

| Strategy                                   | MoSERS<br>Strategy | Required Data for Emission Benefits<br>Calculation                                                                                         | CO <sub>2</sub><br>Emission<br>Benefits<br>(Kg/day) |
|--------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Traffic Signal Optimization                | 5.1                | Length, AADT, speed, cycle length, number<br>of signals, travel time, number of lanes                                                      | 9.150                                               |
| ITS                                        | 5.4                | Length, AADT, speed (before and after)                                                                                                     | 158.45                                              |
| Real-Time Information and<br>Communication | 5.4                | Length, AADT, speed (before and after)                                                                                                     | 158.45                                              |
| Rail Crossing Traffic<br>Management System | 5.5                | AADT, Time railway crossing is closed in a<br>day                                                                                          | 2.05                                                |
| V2I Communications                         | 5.4                | Length, AADT, speed (before and after)                                                                                                     | 158.45                                              |
| Dynamic Freight Routing                    | 7.2                | Freight VMT (Before and After) and Speed<br>(Before and After)                                                                             | 627.17                                              |
| ТМС                                        | 5.4                | Length, AADT, speed (before and after)                                                                                                     | 158.45                                              |
| Intersection Improvements                  | 5.3                | Number of Lanes – Both roads of<br>intersection (Left, Through, Right) &<br>(Before and After), cycle length, all-red<br>time, yellow time | 20.957                                              |
| Interchange Improvements                   | 5.3                | Number of Lanes – Both roads of<br>intersection (Left, Through, Right) &<br>(Before and After), cycle length, all-red<br>time, yellow time | 20.957                                              |
| Increasing Vehicle Occupancy<br>Rates      | 2.1                | Number of HOV Lanes added, Number of<br>General-Purpose Lanes (GPL), Hourly<br>Volume (HOV and GPL) and Speed Limit                        | 96.602                                              |
| Roundabout                                 | 5.8                | Intersection (all approaches)- Volume,<br>Capacity, Delay, No of Lanes                                                                     | 339.481                                             |
| Bike Lanes                                 | 3.2<br>(Option 2)  | Number of cyclists, reduction in vehicle<br>trips, Average trip length, Number of trips,<br>Length of bike lanes,                          | 3,721.874                                           |
| Bikeshare and Electric Bikes               | 3.2<br>(Option 1)  | Number of bikeshare/e-bike users,<br>Reduction in vehicle trips, Average trip<br>length, Number of trips                                   | 2,147.340                                           |

8

## **3 RESULT VISUALIZATION**

Based on the results in Chapter 2, the TTI study team developed a visualization tool using Tableau software to assist in the quantification of STIP  $CO_2$  benefits, as shown in Figure 1. The dashboard has toggles that allow users to filter by STIP fiscal year, TxDOT district, CRS strategy category and type, as well as project CSJ number. If a project CSJ number does not exist (coded "0- -0"), the dashboard assigns it a dummy number of "9999-99-" followed by its MPO project number.

| STIP Filter:<br>STIP Fiscal Year                                                  | STIP CO <sub>2</sub> Cos | st Benefit fo | r All Strategies   |                                 |                            |                             |          |
|-----------------------------------------------------------------------------------|--------------------------|---------------|--------------------|---------------------------------|----------------------------|-----------------------------|----------|
| 2025 V                                                                            | CSJ #                    | Mpo Project # | Total Funding (\$) | Total CO2 Benefits<br>(ST/Year) | Capital recovery<br>factor | Cost of Benefit<br>(\$/ton) | <u>.</u> |
| District                                                                          | 2222-23-004              | NA            | \$10,000           | 885.56                          | 0.1005                     | \$1.13                      |          |
| Strategy Category; Type                                                           | 0918-47-295              | 14079         | \$100,000          | 954.93                          | 0.1005                     | \$10.52                     |          |
| (All)                                                                             | 5000-00-919              | NA            | \$96,500           | 885.56                          | 0.1005                     | \$10.95                     |          |
| Project CSJ Number                                                                | 0918-47-361              | 25093.3       | \$100,000          | 885.56                          | 0.1005                     | \$11.34                     |          |
| (All) •                                                                           | 0918-24-287              | 25089.4       | \$100,000          | 804.26                          | 0.1005                     | \$12.49                     |          |
| Calculation Parameter:                                                            | 2222-23-005              | NA            | \$117,750          | 885.56                          | 0.1005                     | \$13.36                     |          |
| CO2 Quatification Data Source                                                     | 0918-47-384              | 21077         | \$500,000          | 1,689.82                        | 0.1005                     | \$29.73                     |          |
| Composite 💌                                                                       | 2222-23-011              | NA            | \$285,125          | 885.56                          | 0.1005                     | \$32.35                     |          |
| When "Composite" is chosen, the values<br>represent either a valid MoSERS or CMAQ | 0918-47-468              | 25092.2       | \$300,000          | 885.56                          | 0.1005                     | \$34.03                     |          |
| values (i.e., one value is NA), or the average of both.                           | 0918-47-313              | 25078         | \$1,245,000        | 3,379.63                        | 0.1005                     | \$37.01                     |          |
| Project Life (Years)                                                              | 0902-00-358              | 11699.2       | \$341,000          | 885.56                          | 0.1005                     | \$38.68                     |          |
| 12<br>O.                                                                          | 2222-23-008              | NA            | \$375,000          | 926.97                          | 0.1005                     | \$40.64                     |          |
| Discount Rate (%)                                                                 | 2222-23-006              | NA            | \$374,125          | 885.56                          | 0.1005                     | \$42.44                     |          |
| 3                                                                                 | 0902-90-226              | 21054         | \$900,000          | 1,840.49                        | 0.1005                     | \$49.13                     |          |
|                                                                                   | 0902-50-142              | 21062         | \$550,000          | 954.93                          | 0.1005                     | \$57.86                     |          |
|                                                                                   | 0902-00-351              | 16007         | ¢ = = 0,000        | 00E EC                          | 0.1005                     | \$62.20                     |          |

Figure 1. STIP CO<sub>2</sub> Emission Benefit Quantification Tool Dashboard

## 3.1 Emission Benefit Quantification

Before the data was inputted into the dashboard, the TTI study team first assigns CRS strategies in Table 1 to each of the STIP projects based on the description. Codes were written to filter each project's description for keywords associated with the CRS strategy, available in Appendix A, which is then inputted into Tableau. Based on the CRS strategy, the emission benefits were assigned to the project. If the project consisted of multiple strategies, all instances of distinct CRS strategies were accounted for. Users can choose either to use emissions quantified through CMAQ (results from Chapter 2.2.1), MoSERS

(results from Chapter 2.2.2), or a composite of both, which takes the average value if both have valid values or the valid value if the other is invalid.

The "Total Funding" column includes the sum of funding for each category, whereas the "Total CO<sub>2</sub> Benefits (ST/Year)" columns sum up the individual CO<sub>2</sub> benefits for each strategy and each category. When the user hovers over any of the values, a pop-up tooltip, as shown in Figure 2, will appear. This tooltip lists the project's CSJ and MPO numbers, the district where the project lies, the MPO, the highway number, its description, as well as a more detailed breakdown of the funding and CO<sub>2</sub> benefits by category and CRS strategies. For example, project CSJ: 0918-47-313 (Figure 2) is divided into two categories with different funding amounts. The funding from both categories was added to yield the total funding amount. Since each category has a different funding amount, the TTI study team assigned CRS strategies and CO<sub>2</sub> benefits to each category—in this case, two categories with two CRS strategies each. The total CO<sub>2</sub> benefits for the project will be the sum of all four benefits, totaling 3,380 tons per year as shown in Figure 1).

| TIP Informati                                   | on:             |                           |                      |  |  |  |
|-------------------------------------------------|-----------------|---------------------------|----------------------|--|--|--|
| CSJ #:                                          | 0918-47-313     |                           |                      |  |  |  |
| MPO #:                                          | 25078           |                           |                      |  |  |  |
| District:                                       | DALLAS          |                           |                      |  |  |  |
| Stip-Mpo:                                       | NCTCOG - Dallas |                           |                      |  |  |  |
| Highway Num                                     | ber: CS         |                           |                      |  |  |  |
| Description:                                    | 5 ,             |                           |                      |  |  |  |
| Carbon Reduc<br>Distinct count<br>Total Funding |                 | ies:                      |                      |  |  |  |
| Category                                        | CRS Strategy    | Funding per Category (\$) | CO2_Benefits (ST/Yr) |  |  |  |
| 3LC                                             | Bike Lanes      | \$165,000                 | 804.26               |  |  |  |
|                                                 | Demand Shifting | \$165,000                 | 885.56               |  |  |  |
| 7                                               | Bike Lanes      | \$1,080,000               | 804.26               |  |  |  |
|                                                 | Demand Shifting | \$1,080,000               | 885.56               |  |  |  |

#### Figure 2. STIP CO<sub>2</sub> Quantification Tool Pop-Up Tooltip

### 3.2 Cost Benefit Calculation

Capital recovery factor (CRF) is utilized to calculate the cost benefit, in terms of dollars per ton of CO<sub>2</sub> removed each year. CRF is calculated using the formula:

$$CRF = \frac{i(1+i)^n}{(1+i)^n - 1}$$

Where, *i* is the discount rate and *n* is the number of annuities.

The user can adjust the discount rate and number of annuities using a toggle on the dashboard, as seen in Figure 1. The dashboard automatically sorts the results by the cost of benefit in ascending order. The user can also sort this order by total funding or total quantified benefits. Any projects that did not have a CRS strategy assigned, were assigned a CRS strategy without quantification (i.e., congestion pricing, etc.), or had zero total funding were filtered out automatically.

### **4 FUTURE WORK**

The dashboard discussed in this report is a prototype that the TTI study team developed based on minimal input from the TxDOT team. As discussed in Chapter 2.2.1, the TTI study team does not have full confidence in the CMAQ data and filtered out values that were above or below certain ranges to increase the confidence level. Conversely, the MoSERS values, as discussed in Chapter 2.2.2, were derived using a set of default values applied across all strategies and regions. While the TTI study team believes the current configuration is acceptable for the purpose of ranking strategies in terms of CO<sub>2</sub> benefits, it cannot be used as a replacement for specific CO<sub>2</sub> benefits modeling and analysis in its current capacity. The TTI study team will present the dashboard to TxDOT once finalized and will update the dashboard to better fit the TxDOT team's needs based on review and discussion.

# **APPENDIX A: KEYWORDS FOR CRS STRATEGIES**

This appendix includes the keywords used by the TTI study team to filter and categorize strategies, as discussed previously in Chapter 2.1.

| Strategies<br>Category | Strategy                         | Strategy<br>ID | Keywords                            |
|------------------------|----------------------------------|----------------|-------------------------------------|
|                        |                                  |                | Traffic Signal Optimization         |
|                        |                                  |                | Signal Detection                    |
|                        |                                  |                | Upgrade Signals                     |
|                        |                                  |                | Traffic Signal Improvement          |
|                        | T ((' C' )                       |                | Traffic Signal Upgrade              |
|                        | Traffic Signal<br>Optimization   | 1A             | Traffic Signal Upgrades             |
|                        | Optimization                     |                | Traffic Signal                      |
|                        |                                  |                | Traffic Signals                     |
|                        |                                  |                | Signal Timing                       |
|                        |                                  |                | Synchronization                     |
|                        |                                  |                | Traffic Signal Coordination         |
|                        |                                  |                | ITS                                 |
|                        |                                  |                | Intelligent Transportation System   |
|                        |                                  |                | Its Deployment                      |
|                        |                                  |                | Traffic Control Device Installation |
|                        |                                  |                | Traffic Control Device Upgrades     |
| Advance<br>Technology  | ITC                              | 1B             | Traffic Control Device              |
| rechnology             | ITS                              | IB             | Traffic Control Devices             |
|                        |                                  |                | Traffic Control                     |
|                        |                                  |                | Adaptive Traffic Signal Control     |
|                        |                                  |                | Smart City                          |
|                        |                                  |                | Advanced Traffic Management Systems |
|                        |                                  |                | Traffic Control Management          |
|                        |                                  |                | Real-Time Information               |
|                        |                                  |                | Real-Time Communications            |
|                        |                                  |                | Communications Device               |
|                        |                                  |                | Closed-Circuit Television           |
|                        | Real-Time                        | 10             | Dynamic Message Sign                |
|                        | Information and<br>Communication | 1C             | Dynamic Message Signs               |
|                        |                                  |                | DMS                                 |
|                        |                                  |                | CCTV                                |
|                        |                                  |                | Automated Traffic Monitoring        |
|                        |                                  |                | Traffic Monitoring                  |

| Strategies<br>Category | Strategy                          | Strategy<br>ID | Keywords                                 |
|------------------------|-----------------------------------|----------------|------------------------------------------|
|                        |                                   |                | Variable Message Signs                   |
|                        |                                   |                | Changeable Message Signs                 |
|                        |                                   |                | Traffic Surveillance                     |
|                        |                                   |                | IVHS                                     |
|                        |                                   |                | Surveillance                             |
|                        |                                   |                | Communication                            |
|                        |                                   |                | Rail Crossing                            |
|                        |                                   |                | Rail Crossing Traffic Management System  |
|                        | Rail Crossing                     |                | Rail Crossing Improvement                |
|                        | Traffic                           | 1D             | Railway Crossing Control Systems         |
|                        | Management<br>System              |                | Railroad Crossing                        |
|                        | System                            |                | Rail Crossing Barrier Installation       |
|                        |                                   |                | Barrier                                  |
|                        |                                   |                | Vehicle To Infrastructure                |
|                        | V2I<br>Communications             |                | Vehicle To Infrastructure Communications |
|                        |                                   | 1E             | Technology                               |
|                        |                                   | IE             | V2I                                      |
|                        |                                   |                | Communications Technology                |
|                        |                                   |                | Connected Vehicles                       |
|                        |                                   |                | Freight Routing System                   |
|                        | Dynamic Fraight                   |                | Dynamic Freight Routing System           |
|                        | Dynamic Freight<br>Routing        | 1F             | Dynamic Freight                          |
|                        | e a tg                            |                | Freight Routing                          |
|                        |                                   |                | Freight Route                            |
|                        |                                   |                | Traffic Management Center                |
|                        | ТМС                               | 1G -           | Traffic Management and Operations Center |
|                        | TIVIC                             | 10             | ТМС                                      |
|                        |                                   |                | Incident Management                      |
|                        |                                   |                | Dynamic Parking                          |
|                        |                                   |                | Dynamic Parking Signs                    |
|                        |                                   |                | Dynamic Parking Availability Signs       |
|                        | Dynamic Parking                   |                | DPAS                                     |
|                        |                                   | 111            | Truck Parking System                     |
|                        | Availability Signs<br>and Systems | 1H -           | Truck Parking Availability System        |
|                        | and systems                       |                | TPAS                                     |
|                        |                                   |                | Smart Parking                            |
|                        |                                   |                | Intelligent Parking                      |
|                        |                                   |                | Real-Time Parking                        |

| Strategies<br>Category | Strategy        | Strategy<br>ID | Keywords                      |
|------------------------|-----------------|----------------|-------------------------------|
|                        |                 |                | Parking Information System    |
|                        |                 |                | Electronic Parking            |
|                        |                 |                | Parking Occupancy             |
|                        |                 |                | Adaptive Parking              |
|                        |                 |                | Intersection Improvement      |
|                        |                 |                | Intersection Upgrade          |
|                        |                 |                | Intersection Improvements     |
|                        |                 |                | Roundabout Installation       |
|                        |                 |                | Roundabout                    |
|                        | Intersection    | 2.4            | Convert Intersection          |
|                        | Improvements    | 2A             | Pedestrian Crossing           |
|                        |                 |                | Turn Lane Addition            |
|                        |                 |                | Turn Lane                     |
|                        |                 |                | Traffic Congestion Mitigation |
|                        |                 |                | Traffic Control Measures      |
|                        |                 |                | Traffic Calming               |
|                        | Demand Shifting | 28             | Demand Shift                  |
|                        |                 |                | Shift Demand                  |
|                        |                 |                | Carpool                       |
| Travel                 |                 |                | Carpooling                    |
| Demand                 |                 |                | Vanpool                       |
| Management             |                 |                | Vanpooling                    |
|                        |                 |                | Telecommute                   |
|                        |                 |                | Telecommuting                 |
|                        |                 |                | Transit                       |
|                        |                 |                | Bus                           |
|                        |                 |                | Public Transit                |
|                        |                 |                | Public Transportation         |
|                        |                 |                | Bike                          |
|                        |                 |                | Biking                        |
|                        |                 | -              | Walking                       |
|                        |                 |                | Bike Lanes                    |
|                        |                 |                | Bike Share                    |
|                        |                 |                | Bike Sharing                  |
|                        |                 |                | Pedestrian                    |
|                        |                 |                | Pedestrian Infrastructure     |
|                        |                 |                | Education                     |

| Strategies<br>Category | Strategy        | Strategy<br>ID | Keywords                       |
|------------------------|-----------------|----------------|--------------------------------|
|                        |                 |                | Educational Campaigns          |
|                        |                 |                | MAAS                           |
|                        |                 |                | Park-And-Ride                  |
|                        |                 |                | Rideshare                      |
|                        |                 |                | Ride-Sharing                   |
|                        |                 |                | Transit Vehicles               |
|                        |                 |                | Transit Fare                   |
|                        |                 |                | Interchange Improvement        |
|                        |                 |                | Interchange Reconstruction     |
|                        |                 |                | Convert Interchange            |
|                        | Interchange     | 2C             | Interchange Reconfiguration    |
|                        | Improvements    |                | Interchange Access Improvement |
|                        |                 |                | Interchange Design Upgrades    |
|                        |                 |                | Interchange Capacity           |
|                        |                 |                | Vehicle Occupancy Rate         |
|                        |                 | 2D             | Vehicle Occupancy              |
|                        |                 |                | Increase Vehicle Occupancy     |
|                        | Increasing      |                | HOV                            |
|                        | Vehicle         |                | НОТ                            |
|                        | Occupancy Rates |                | High Occupancy Vehicle         |
|                        |                 |                | High-Occupancy Vehicle         |
|                        |                 |                | High Occupancy Toll            |
|                        |                 |                | High-Occupancy Toll            |
|                        | Shifting Demand |                | Shift Demand                   |
|                        | to Nonpeak      |                | Shifting Demand                |
|                        | Hours           |                | Demand Shift                   |
|                        |                 |                | Nonpeak                        |
|                        |                 |                | Non-Peak                       |
|                        |                 | 2E             | Remote Work                    |
|                        |                 | -              | Remote Working                 |
|                        |                 |                | Flexible Work Hours            |
|                        |                 | -              | Peak Hour Traffic Mitigation   |
|                        |                 |                | Off-Peak Travel Incentives     |
|                        |                 |                | Congestion Pricing             |
|                        | Congestion      |                | Express Lane                   |
|                        | Pricing         | 2F             | Express Lanes                  |
|                        | J               |                | Managed Lane                   |

| Strategies<br>Category | Strategy                  | Strategy<br>ID | Keywords                        |
|------------------------|---------------------------|----------------|---------------------------------|
|                        |                           |                | Managed Lanes                   |
|                        |                           |                | Tolling                         |
|                        |                           |                | Dynamic Tolling                 |
|                        |                           |                | Toll Plaza                      |
|                        |                           |                | Electronic Road Pricing         |
|                        |                           |                | Transportation Pricing          |
|                        |                           |                | Pricing Policies                |
|                        | Roundabout                | 2G             | Roundabout                      |
|                        | Roundabout                | 20             | Round About                     |
|                        |                           |                | Bicycle Lane                    |
|                        | Bike Lanes                | -              | Bicyclist                       |
|                        |                           |                | Bicyclist Separation            |
|                        |                           |                | Bike Lane                       |
|                        |                           | 3A             | Motor Vehicle-Pedestrian        |
|                        |                           |                | Pedestrian                      |
|                        |                           |                | Pedestrian Bridge               |
|                        |                           |                | Shared Use Path                 |
|                        | Visibility<br>Improvement | 3B             | Streetlight                     |
| Active                 |                           |                | Street Light                    |
| Transportation         | improvement               |                | Visibility                      |
|                        |                           |                | Americans with Disabilities Act |
|                        | ADA                       | 3C             | ADA                             |
|                        | Improvements              |                | Disability                      |
|                        |                           |                | Disabilities                    |
|                        |                           |                | Bikeshare                       |
|                        | Bikeshare and             | 20             | Bike Share                      |
|                        | Electric Bikes            | 3D             | Bicycle Sharing                 |
|                        |                           |                | Electric Bike                   |
|                        |                           |                | Electric Bicycle                |