

Introduction to Travel Demand Modeling

January 2024

Introduction to Transportation Modeling

Transportation Modeling

Why model or simulate traffic?

Importance of Transportation Models

Travel Demand Models

Types of Travel Demand Models

How to build a model?

Before Modeling: Collect Input Data

Data Organization is Critical!

Understanding Roadway Network

Network Attributes

Four Step Model

O How many trips are being **produced** from and **attracted** to each TAZ?

Step 1: Trip Generation

Trip Purpose

Home-Based Other

Non-Home Based

• External Trips

Step 2: Trip Distribution

Determine where trips are going to and coming from

Which transportation **modes** will be used to complete the trip?

が方日日

Step 3: Mode Choice

Mode choice methods: Mode choice methods: Direct generation Trip end models

The logit model considers the relative utility of each mode based on various model attributes

$$U_m = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n$$

U_m: Utility of mode m

100 -

X_i: Attribute value (time, cost, etc.)

 β_i : Coefficient value for attribute *i*

n: Number of attributes

Step 4: Trip Assignment

Determine the **path** a trip will take between the origin and destination TAZ

Model Outputs

Model Reliability

Acceptable Ranges of Error

	Standards	
Statistic	Acceptable	Preferable
Freeway Volume-to-Count	+/-7%	+/-6%
Arterial Volume-to-Count	+/-15%	+/-10%
Collector Volume-to-Count	+/-25%	+/-20%
One way/Frontage Road Volume-to-Count	+/-25%	+/-20%

- External model cordon lines should achieve +/-1 percent
- Screenlines with greater than 70,000 AADT should achieve +/-10 percent
- Screenlines with 35,000 to 70,000 AADT should achieve +/-15 percent
- Screenlines with less than 35,000 AADT should achieve +/-20 percent
- Cutlines +/-15 percent

Source: Florida Department of Transportation System Planning Office

	Standards	
Statistic	Acceptable	Preferable
Percent Error: LT 10,000 Volume (2L road)	50%	25%
Percent Error: 10,000-30,000 (4L road)	30%	20%
Percent Error: 30,000-50,000 (6L road)	25%	15%
Percent Error: 50,000-65,000 (4-6L freeway)	20%	10%
Percent Error: 65,000-75,000 (6L freeway)	15%	5%
Percent Error: GT 75,000 (8+L freeway)	10%	5%

Source: Florida Department of Transportation System Planning Office

Statistic	Standards	
	Acceptable	Preferable
RMSE: LT 5,000 VPD	100%	45%
RMSE: 5,000-9,999 VPD	45%	35%
RMSE: 10,000-14,999 VPD	35%	27%
RMSE: 15,000-19,999 VPD	30%	25%
RMSE: 20,000-29,999 VPD	27%	15%
RMSE: 30,000-49,999 VPD	25%	15%
RMSE: 50,000-59,999 VPD	20%	10%
RMSE: 60,000+ VPD	19%	10%
RMSE Areawide	45%	35%

Source: Florida Department of Transportation System Planning Office

Functional Type	Small Regions	Large Regions*
Freeways	20%	20%
Principal Arterials	30%	35%
Minor Arterials	40%	50%
Collectors	70%	60%

Source: Virginia Department of Transportation

Truck and Freight Modeling

MPOs should consider freight to be distinct from trucks in their transportation planning

----O Freight models may include non-highway modes

Freight Travel Demand Modeling Framework

- P Trucks can be used to perform services, do maintenance, carry construction material, deliver local treight

Model Applications

Model Applications

Evaluation of transportation system performance

Long- and short-term transportation planning

• Air quality conformity analysis

Evaluation of transportation improvements and infrastructure investments

Evaluation of the effects of transportation and planning policies

Analytical Methods

Focusing Method

Footuroo	Analytical Method		
Features	Focusing	Windowing	
Spatial dimension	Focus area varies	Small area	
Temporal dimension	Short, intermediate and long	Short	
Spatial detail	Enhanced	Enhanced	
Temporal detail	Time periods of day	Peak hours	
Extraction	No	Yes	
OD trip table	Regional	Separate OD trip tables for subarea	
Traffic operational characteristics	Limited	More flexible to add	
Interaction between subarea and rest of region	Maintained	No/Limited	
Consistency with regional model in traffic assignment method	Maintained	Preferred but not necessary	
Model run time	Like regional model	Much shorter	

Modeling Techniques

Frequently Asked Questions

How much time does it take to build a travel demand model?

Large metropolitan area: several years

How often are MPOs updating their network?

^L--O TDMs are updated every five years (it is part of the federally mandated RTP planning process)

If 2020 and 2025 TDMs are available, what can MPOs do if they want to model 2023 scenario?

i--O MPOs can use 2025 model but input 2023 demographic data

