Introduction to

Texas Guide to Accepted Mobile Source Emission Reduction Strategies (MOSERS)

Reza Farzaneh, Ph.D., P.E. Robert Huch, P.G., CPESC Madhusudhan Venugopal, P.E.

Texas A&M Transportation Institute

Introduction to

Texas Guide to Accepted Mobile Source Emission Reduction Strategies (MOSERS)

*All attendees will be automatically muted at the start of the webinar.

MOSERS Training – Part 1

INTRODUCTION

What is MOSERS?

Application of MOSERS

Analytical Approaches to MOSERS

Overview of the MOSERS Guide Module 2

MOSERS Spreadsheet Tool

Stakeholders

• Participants will develop an understanding of:

- MOSERS methodologies basics
 - Types of emission reduction strategies
 - Basics on activities & emission rates
 - Difference of benefits in SIP, conformity, & CMAQ
- Hands-on exercise on a few strategies

MOSERS Training – Part 2

WHAT IS MOSERS?

What is MOSERS?

MOSERS = Mobile Source Emission Reduction Strategies

- A set of project types known to reduce mobile source emissions and assist in meeting the NAAQS
- MOSERS <u>Guide</u> is a set of methodologies, equations, and tools to estimate emission reduction benefits

MOSERS Guide provides

- Uniformity
- Consistency
- Modeling that is not travel demand model (TDMs)

Emissions Benefits Estimations

Sketch Planning Methods

- Simple equations
- Requires assumptions
- Less time and data needed

Models

- More accurate
- Complex and data intensive
- Requires skills such as software programs

The Texas **Guide to Accepted Mobile Source Emission Reduction Strategies** (MOSERS)

3rd

Edition

2020

Laws and Regulations

Criteria Pollutants

EPA established the National Ambient Air Quality Standards (NAAQS) for six Criteria Pollutants

- Carbon monoxide (CO)
- Particulate matter (PM)
- \bigcirc Ground-level ozone (O₃)
- 4 Nitrogen dioxide (NO₂)
- **5** Lead (Pb)
- **6** Sulfur dioxide (SO₂)

Transportation is a major contributor to these four

State Implementation Plan (SIP)

- A plan for cleaning the air in those areas of the state that do not meet the levels of air pollutions set in the NAAQS
- Demonstrates how and when Texas will attain air quality standards established under the federal Clean Air Act
- Areas not conforming to NAAQS within the state may be designated nonattainment and are then subject to additional planning and control requirements
- An emissions inventory of the pollutants in the nonattainment area is required

Transportation Conformity

Transportation conformity links transportation planning and air quality planning for the purpose of ensuring that changing transportation plans continue to meet established emissions budgets in the SIP

The CAA requires transportation conformity for non-attainment and maintenance areas

MOSERS Background

Transportation Control Measures are defined as:

- Emissions control measures listed in CAA Section 108(f)(1)(a)
- Any measure that reduces emissions by reducing vehicle use or improving traffic flow (i.e., reducing congestion)

[CLEAN AID ACT				
	Sec. 100			Sec. 109	108	28
	Ser ing			or	air	ies.
29				30 gy	1b- 10	ies
	CLEAN AIR ACT	Sec.	108 Ist Fr	rai in-	or it	ion
(5)	such other methods as the Adr	ministrator data	so con	1- er-	fi- ro	n-
(f)(1) T	e Administrator shall multi	ning process.	es	es.	IV- Los	on
appropriate	Federal, State, and local enviror	and make available	to ir light		ch ioi	n.
Clean Air	act Amendments of 100er af	ter enactment of th	r-		te roc	-
thereafter_	for and	from time to tim	e pollut.		nt o.	
with the	Secretary of Transported, as appropri	riate, in consultation	quality	an	pol-	
tion and	and opportunity for comment re	after providing pub-	an air	ard	in list	
measures	related to criteria pullential of the	ansportation control	ployed	ach	ie ised	
cluding, bi	it not limited to-	their precursors, in-	alth of	ued	e- uch	
(ii) restriction of certain	ansit;	proce-	sub-	for-	
high of	such roads or lanes for use by	anes to, or construc-	t may	Iter reg.	, as	
(iii	employer-based transport	passenger buses or	other	sec-	con-	- 1
(iv)	trin-reducti	management plans,	ll also	ions	Act	
(v)	traffic flow improvement		dures	cri-	a sue	
(vi)	fringe and the	ams that achieve		Air	eria	
ties service:	ing multiple occupancy was corric	for parking facili	, and	pro-	ni-	
(vii)	programs to limit	rograms or transit		and-	car-	
ticularly	as or other areas of amit veh	ticle use in down	ict of	n of	air	
(viii)	programs for the peak use;	oncentration par-	rator		leg.	
(ix) n	, shared-ride services.	ll forms of high	years	ards	Sec-	
tain sectio	ns of the metropolitions of road	surfa-	qual-	the	hin	
place; ve	hicles or pedestrian use hot the	e use of non-me	any Si	uch	s of	
other facili	grams for secure Li	as to time and	ation m	ul-	the	
and protec	tion of Ling bicycle lanos f	e facilities and	ation	ro.	and	
(xi) pro	of bicyclists, in both publ	he convenience	it of yt	he	in.	
(xii) pro	grams to control extended id:	and private	pro-	d-	uch	
start conditi	title II, which motor vehicle e	of vehicles;	iate	ed	ing	
(xiii) em	ployer-spon	extreme cold	pro- Suc	h	adi:	
(xiv) pro	es; pousored programs to p	ermit a	that		idi-	
nobile trave	provision and ordinances to facility	flexible	ince in the	e	to	
le travel, as	ly reduce the need contacting	ate non-auto-	red rd for	:		
ances appl	of a locality	cupant vehi	ude inless,		all	
d other cent	ble to new shopping program	and develop-	a pe-			
ructions of	ams for new activity;	ecial events	for			
strian or oth	ths, tracks or areas and and m	Daion tr	ur			
	motorized mosely for the	recon-				

Examples of MOSERS

- Intersection improvements
- Bicycle/pedestrian facilities
- HOV lanes
- Rail
- Grade separations
- Park-and-ride
- Vanpools

- Intelligent transportation systems
- Traffic signal improvements

- Employee trip reduction program
- Clean vehicle program
- Locally-enforced idling restrictions
- Diesel idling reduction program

Questions and Comments

Introduction to the MOSERS Guide

History of the MOSERS Guide

Final MOSERS Guide Format

MOSERS Guide – Module 2

Analysis methods for emission reduction estimation

The document provides

- Analysis methods for each strategy
- Provides descriptions of required inputs and variables
- Data sources
- Does not include calculation for activity data

MOSERS Guide – Spreadsheet Tool

Automates activity and emission calculations

The tool provides

- Estimates of vehicle activity and emission benefits
- Emission rates for seven Texas metropolitan areas
- Default input values
- Documentation in a convenient format

MObile So	urce Emission	n Reduction Strategies				Transportation Institute
Main M	Aenu	Save Report as PDE View Report		Project Inform	ation On	en Strategy Documentation
				riojectimotim		en strategy botamentation
		Input Data Press here to clear input v	values)	Variable	Value	Units
Region		Metropolitan area		Select 🔻	Dallas/ Fort Vorth	•
Year		Analysis year			2018	•
Road Type		Urban or rural with restricted or unrestricted access			Urban-Freeway	•
		Area type			Urban	-
Facility Geogr	aphic	Corridor length		L Coloreta	10.0	mile
Information		r aciiity type		Select 🔻	Freeway	•
		Peak time of the day			Morning Peak Only	•
Facility Existir Information	ng Traffic	Annual average daily traffic along the facility			100,000	vehicles / day
General Purpo	ise Lane	Number of general purpose lanes			3	lane
HO¥ Lane		Number of additional HOV lanes			1	lane
		Default Data	Default	Variable	Value	Units
Default Ocuup	ancy	General purpose rane auto occupancy HOV lane auto occupancy	1.13	0.20	1.13	person
- Existing Ex-19	ta Teaffia	Notimes of peak hours	2.31	0,4	2.31	person ushialag Uppa Uppa
Existing Facili Information	(g Traffic	Peak-hour hourlu traffic volume	6 769 **	View	6 769	venicies riane rinour
Default Service	e Hours	Peak service hours per dau	3"	V Prof	3	hour
Derauk Gelvic		- car service mouth per day		N,øy		nodi
	Capacity	Facility capacity	2,231**	С	2,231	vehicles / lane / hour
Default Traffic Constant	Free Flow Speed	Facility free flow speed	60 **	Vicella	60	mph
	Occupancy Vehicles	Percent of high-occupancy vehicles along the facility	20	Panya	20	percent
	V/C Ratio	Projected HOV lanes volume/capacity ratio	0.90	V/C,#	0.90	•
	¥olume Reduction Term	General purpose Lane volume reduction compared to additional HOV capacity	0.95	Fs	0.95	
		Delay calculation term A	0.015 **	A	0.015	minutes / mile
Default Delay Function Terms		Delay calculation term B	3.5 **	В	3.5	minutes / mile
		Delay calculation term M - maximum minutes of delay per mile	1"	M	1	minutes / mile
Jouble asterisk in	dicates that the <i>Defa</i>	ulf value is dependent on <i>Input Data Value(s)</i> and can vary based on user input data se	lections.			
		Calculated Data		¥ariable	Value	Units
General	Volume	General purpose rane vehicle volume - before		V co.p	6,769 E 493	vehicles / hour
		General purpose rane venicie volume - arter General purpose lane V/C ratio - before		V car, at	0,483	vehicles / hour
	V/C Ratio	General purpose lane V/C ratio - berole		V/C a,a	0.92	•
		General purpose lane delau - before		WC and	5.17	- minute Luebiele
	Delay	General purpose lane delau - after		ورس ل	2,64	minute / vehicle
Purpose Lane		General purpose lane speed - before		ورون ل	39.55	moh
Calculation	Speed	General purpose lane speed - after		V (M) A	47.47	mph
	Travel Time	Travel time under free-flow conditions		TTent	10.00	minute
		General purpose lane travel time - before		TTure	15.17	minute
		General purpose lane travel time - after		TTues	12.64	minute
	VAT	Daily peak hour general purpose lane VMT - before		VMT ₂	203,084	
	1 141	Daily peak hour general purpose lane VMT - after		VMT,	164,498	
	¥olume	Additional HOV lane volume		VAGA	1,354	vehicles / hour
	YMT	Daily peak hour HOV lane VMT		VMT.mg	40,617	•
	Delay	HOV lane delay - after		D _#	3.50	minute / vehicle
CIUT LARE	Speed	HOV lane speed - after		11.0	44.44	mph

MOSERS Guide – Web Edition

Provides MOSERS documentation and tools

The MOSERS section of the TxDOT Air Quality Portal web edition provides:

- MOSERS Guide documentation
- Strategy equations
- Download versions of the MOSER Module 1 and 2 documents and the current MOSERS Spreadsheet Tool
- Emission factors used in the MOSERS Spreadsheet Tool.

Questions and Comments

MOSERS Training – Part 3

APPLICATION OF MOSERS GUIDE

Prior to MOSERS Guide, there was a wide variety of methods and equations that were used to estimate emission benefits for transportation projects

MOSERS was developed to provide Texas practitioners with consistent emission estimation methods

CMAQ Reporting and Funding

MOSERS can be used off-the-shelf for regional evaluations

Transportatior Conformity

State

mplementation

Plans

What If? Scenarios

CMAQ Reporting and Funding

Grant Applications

Transportation Conformity Must use regionally specific information for conformity what If State Scenario

mplementatior

Plans

Reporting and Funding

> Transportation Conformity

Demonstration State Scenario

Attainment

Plans

CMAQ Reporting and Funding

Project selection or project ranking

What If? Scenarios

CMAQ Reporting and Funding

> MOSERS can be used to demonstrate potential emission benefits

Transportation Conformity

State

Plans

What If? Scenarios

Grant

Applications

MOSERS Applied in SIP, Conformity and CMAQ

Different assumptions and inputs

• Affected by start date of the analysis

SIP

Emission benefits estimated for future years (attainment demonstration)

Conformity

Emission benefits estimated for current, future, and past years (depends of MVEB year) CMAQ Reports submitted for year in which projects are completed

Documentation of MOSERS

Documentation of MOSERS - Examples

Expected MOSERS Documentation Elements

Project TIP ID:	
Project name:	
Description (objective):	
Project limits or scope (specific location or locations):	
Funding Category:	
Implementation agency:	
Letting date:	
Implementation date:	
Project Benefits Methodology:	
Analysis tool:	
Is the methodology national or locally derived?	
Inputs and sources/assumptions and their basis:	
Procedures for obtaining and maintaining data (brief description):	

Off-Model Documentation Elements

Traffic Signal Coordination The city's master traffic signal controller was replaced with a new controller with expanded capacity. This allowed 26 more intersections to be coordinated. Inputs to Calculated Cost-Effectiveness Funding dollars (funding): \$90,000 Effectiveness period life): 5 years Days of use/year (D): 250 Length of congested roadway segment (L): 8.07 miles Traffic volume during congested period (congested traffic): 88,643 trips per day Before speed: 28 mph After speed: 33 mph Emissions Factor Inputs (from Table 4): Before Speed Factor After Speed Factor ROG Factor 0.51 grams per mile 0.43 grams per mile NO_x Factor 1.14 1.13 PM₁₀ Factor 0 0 Calculations: Annual Project VMT (VMT) = (D) * (L) * (Congested Traffic) =250 * 8.07 * 88,643 = 178,837,253 annual miles Annual Emission Reductions (ROG, NOx, and PM10) in lb. per year = [(0.50) * (VMT) * (Bef Speed Fctr - Alt Speed Fctr)]/454 grams per lb. Note: Initial speed improvements decline to zero improvement by the effectiveness period. In order to account for this, the emission reduction equation reduces initial emission reduction benefits by one half. ROG: [(0.50) * (178,837,253) * (0.51 - 0.43)]/454 = 15,757 lb. per year NO_x: [(0.50) * (178,837,253) * (1.14 – 1.13)/454 = 1,970 lb. per year PM₁₀: [(0.50) * (178,837,253) * (0 - 0)/454 = 0 lb. per year

Questions and Comments

MOSERS Training – Part 4

ESTIMATION OF EMISSION BENEFITS

Methods

- On-model (TDM)
- Off-model
 - Trip Behavior Modification
 - Transportation System Improvements
 - Vehicle and Fuel Technology

Modeled vs Non-Modeled

Emissions Estimation

Calculated as Mass / Time

(pounds/day, kilograms/day, tons/year, etc.)

Where:

- Activity can be VMT, number of starts, idling hours, fuel consumed, etc.
- Emission rates can be function of fuel consumed, distance, duration, etc.

Vehicular Emissions Sources

Vehicles emission occur during:

- Starts
- Idling
- Running
- When parked

Emission vary due to:

- Fuel type
- Vehicle type and age
- Operating speed

Emission Rates Estimation Models MOVES3, 2021 MOVES2014b, 2018 • • MOVES2014a, 2015 MOVES2014, 2014 • MOVES2010b, 2013 MOVES2010a, 2010 MOVES2010, 2010 MOBILE6.2, 2003 • MOBILE6, 2002 MOBILE5, 1993 • MOBILE4, 1989 MOBILE3, 1984 MOBILE2, 1981

MOBILE1, 1978 •

Factors Affecting Emission Rates

Major Sources of Key Input Data

MOVES Emission Process

Process ID	Emission Process	Rates/Distance	Rates/Vehicle	Rate/Profile
1	Running Exhaust	Х		
2	Start Exhaust		Х	
9	Brakewear	Х		
10	Tirewear	Х		
11	Evap Permeation	Х	Х	Х
12	Evap Fuel Vapor Venting	Х		Х
13	Evap Fuel Leaks	Х	Х	Х
15	Crankcase Running Exhaust	Х		
16	Crankcase Start Exhaust		Х	
17	Crankcase Extended Idle Exhaust		Х	
18	Refueling Displacement Vapor Loss	Х	Х	
19	Refueling Spillage Loss	Х	Х	
90	Extended Idle Exhaust		Х	
91	Auxiliary Power Unit		Х	

MOVES Roadway Type

Rural & Urban Restricted Access

- Freeways/interstate highways
- Toll-ways
- Managed/HOV lanes

Rural & Urban Unrestricted Access

- Arterials
- Collectors
- Locals
- Ramps

MOVES Vehicle Types

Vehicle Class	Source Type ID	Description
	11	MotorCycle
Light Duty	21	Passenger Car
	31	Passenger Truck: SUV, Pickup Truck, Minivans - Two-Axle/Four-Tire Single Unit
	32	Light Commercial Trucks - Two-Axle/Four-Tire Single Unit
Buses &	41	Intercity Buses
	42	Transit Buses
	43	School Buses
Medium-Duty	52	Single-Unit Short-Haul Trucks
	53	Single-Unit Long-Haul Trucks
	54	Single- Unit Motor Homes
	51	Refuse Trucks
Heavy Duty	61	Combination Short-Haul Trucks
	62	Combination Long-Haul Trucks

Emission Rates by Speed

How Are The Rates Used?

Questions and Comments

Break

MOSERS Training – Part 5

OVERVIEW OF THE MOSERS GUIDE MODULE 2

MOSERS Guide – Module 2

Analysis methods for emission reduction estimation

The document provides:

- Analysis methods for each strategy
- Provides descriptions of required inputs and variables
- Data sources
- Does not include calculation for activity data

|--|

MOSERS Guide – Module 2

17 broad types of strategies

Table of Contents

	Jacobie Said Data Sourcession
1.0	System /Sogrige Expansion
1.1	System/Service Expansion
1.2	Marketing Strategies
2.0	High-Occupancy Vehicle Facilities
2.1	Freeway HOV Facilities
2.2	Arterial HOV Facilities
2.3	Parking Facilities at Entrances to HOV Facilities
2.4	SOV Utilization of HOV Lanes
3.0	Employer-Based Transportation Management Programs
3.1	Transit/Rideshare Services
3.2	Bicycle and Pedestrian Programs
3.3	Employee Financial Incentives
4.0	Trip-Reduction Ordinances
4.1	Negotiated Agreements
4.2	Trip-Reduction Programs
4.3	Mandated Ridesharing and Activity Programs
4.4	Requirements for Adequate Public Facilities
4.5	Conditions of Approval for New Construction
5.0	Traffic Flow Improvements
5.1	Traffic Signalization
5.2	Traffic Operations
5.3	Enforcement and Management
5.4	Intelligent Transportation Systems (ITS)
5.5	Railroad Grade Separation
5.6	General Intersection Improvements
5.7	Shoulder Lane Application
5.8	Roundabouts
6.0	Park-and-Ride/Fringe Parking
6.1	New Facilities
6.2	Improved Connections to Freeway System
6.3	Onsite Support Services
	Shared-Use Parking
6.4	Vehicle Use Limitations and Restrictions
6.4 7 .0	
6.4 7.0 7.1	No-Drive Days
6.4 7.0 7.1 7.2	No-Drive Days Control of Truck Movement

8.0 8. 8.	Area-Wide Rideshare Incentives	
8.1	Commute Mr.	
0	2 minute Management Organization	
8	Iransportation Management Association	
0.0	Tax Incentives and Subsidy Program	
2.0	Bicycle and Pedestrian Lange O	
9.1	Bicycle and Pedestrian Lanes, Support Facilities, and Program	
9.2	Bicycle and Pedestrian Sugar Paths	
10.0	Extended Vehicle Little	
10.1	Controls on Drive Th	
10.2	Controls on Idling Littles	
10.3	Controls on Idling Till	104
11.0	Extreme Low T	100
12.0	Work Sat	110
12.1	work Schedule Changes	
12.2	I elecommuting	
12.3	Flextime	
12.0	Compressed Work Week	
13.0 1	Activity Centers	
13.1	Design Guidelines and Reputer	
13.2	Parking Regulations and Sta	
13.3	Mixed-Use Development	
14.0 A	ccelerated Vabiate D	
14.1	Cash Payments	
15.0 Pa	arking Man	100
15.1	Preferencial D. do	120
15.2	Public Sector Parking for HOVs	150
15.3	Parking Pricing	
15.4	On Share Requirements in Zoning Ordinana	
16.0 Val	S ordinatices	
16 1 (ucle Replacement, Retrofite and D	
16.2 7	Ican Vehicle Program	
17.0 -	ruck Efficiency Program	146
17.0 Pric	ing Strategies	
17.1 Fa	acility Pricing	
17.2 Co	ordon Pricing	
17.3 Pa	y-As-You-Drive (PAVD) r	152
Appendix, S	ummary of L	156
	annary of Input Variables	150
		107
vi	The Texas Guide to Accepted Mobile Source Emission Reduction Strategies (M Module 2: Metho	(OSERS) Indologies

MOSERS Guide – Module 2

Individual Strategies

- Description
- Application
- Equation
- Variables

2.1 Freeway HOV Facilities

Reduce emissions by decreasing VMT and increase average speeds on the lane.

Description

Separate lanes on controlled access highways are created for vehicles containing a specified minimum number of passengers. The lane may be concurrent flow, be barrier/buffer separated, or have a separate right-of-way.

Application

Highways in areas of traffic congestion with sufficient available right-of-way.

Daily Emission Reduction (grams/day) = A + B + C + D

 $\mathbf{A} = \mathbf{V}_{HA} * (\mathbf{E}\mathbf{F}_B - \mathbf{E}\mathbf{F}_{HA}) * \mathbf{N}_{PH} * \mathbf{L}$

Change in running exhaust emissions from vehicles shifting from general purpose lanes to HOV lanes

 $\mathbf{B} = (\mathbf{V}_{GP,B} * \mathbf{EF}_B - \mathbf{V}_{GP,A} * \mathbf{EF}_{GP,A}) * \mathbf{N}_{PH} * \mathbf{L}$

Change in running exhaust emissions of vehicles in general purpose lanes as a result of vehicles shifted away from general purpose lanes

$C = VT_R * TEF_{AUTO}$

Reduction in auto start exhaust emissions from trip reductions

$D = VMT_R * EF_B$

Reduction in auto running exhaust emissions from trip reductions

$VT_R = N_P * (F_T * F_{T,SOV} + F_{RS} * F_{RS,SOV}) * (1 - 1/AVO_{RS})$

Number of HOV users multiplied by the sum of the fraction of users selecting transit multiplied by the percentage that previously drove single-occupant vehicles added to the fraction of users selecting ridesharing multiplied by the percentage that previously drove single-occupant vehicles multiplied by the percentage of rideshare users that are passengers

$VMT_{R} = VT_{R} * TL_{W}$

Number of vehicle trips reduced multiplied by the average auto trip length

The Texas Guide to Accepted Mobile Source Emission Reduction Strategies (MOSERS) Module 2: Methodolopies

sons/vehicle) Average vehicle occupancy of rideshare Speed-based running exhaust emission factor for affected roadway before implementation (NO_X, VOC, PM, or CO)

Speed-based running exhaust emission factor on general purpose lanes after implementation of HOV facility (NO_X, VOC, PM, or Speed-based running exhaust emission factor on HOV facility

Definitions

Variables (unit)

(NO_X, VOC, PM, or CO) (estimate) Percentage of people attracted to the HOV facility using rideshare

Percentage of people attracted to the HOV facility using rideshare

Percentage of people attracted to the HOV facility using a transit

Percentage of people using a transit vehicle that previously were

Length of HOV facility

Total number of expected people using the HOV lanes per day

Number of peak hours (AM and/or PM)

Auto trip-end emission factor (NOx, VOC, PM, or CO) Average auto trip length

Average hourly volumes on general purpose lanes during peak hours after implementation of HOV facility

15

Average hourly volumes on general purpose lanes during peak hours before implementation of HOV facility

Average hourly volumes on HOV lanes during peak hours

Reduction in daily automobile VMT

Source Emission Reduction Strategies (MOSERS)

Reduction in number of daily automobile vehicle trips (estimate) exas A&M Transportation Institute)

Activity Information Needed for MOSERS

Depends on the strategy

Most common

VMT (Volume * Length of the Roadway) Average hourly speed Fuel consumed No. of starts Idling hours Trip length Vehicle population

Activity Data Sources

Activity Type	Data Sources
Vehicle Miles of Travel (VMT)	Travel demand & micro-simulation model, HPMS
Volume	Travel demand & micro-simulation model, traffic counts, traffic studies
Speed	Travel demand & micro-simulation model, NPMRDS, other data sources
Trip Length	Travel model (regional specific- trip purpose), NHTS
Vehicle Population	TxDOT DMV, other proprietary data sources
Starts	EPA models, other peer reviewed studies and models
Idling Hours	EPA models, fleet management databases, other peer reviewed studies and models
Fuel Consumed	EPA models, fleet management databases, other peer reviewed studies and models

Additional Notes for Emission Rates

Not necessary to run models to calculate emissions for all strategies

Preference for local data where available

Emission rates requires post processing depending on the strategy

Can obtain emission rates from MPOs, TCEQ, TxDOT/TTI*

* Emission rates are available for seven metropolitan areas in Texas from the MOSERS web edition (TxAQ Portal)

CLASS EXERCISE

Using the MOSERS Guide Module 2 Emission Equations Instructor Demonstration

Class Exercise 1: Transit System Service Expansion

Increase ridership by providing new rail system services and/or expanding bus services

- Expansion of rail services through increased frequency or route extension
- Expansion bus or paratransit services with new vehicles and/or route extensions

Application

 Large cities or communities with enough population density to support reasonably frequent transit service

Class Exercise 1

A city wants to explore replacing a portion of their bus fleet with newer, more fuel efficient and lower emission buses. If the project were to move forward, the replacement buses would be purchased in 2024 to replace buses ten years old or older. Both replacement and new buses will be diesel powered.

Calculate NOx emission benefits using following information.

Traffic Information		
Average model year of buses to be replaced	=	2014
Anticipated average model year of new bus	=	2024
Average Bus Speed	=	22 mph
Total vehicle miles traveled (VMT) of buses to be replaced	=	6,336

Class Exercise 1: Clean Vehicle Program

Source: CalTrans/ CARB

Class Exercise 1: Step 1 Equation

Daily Emission Reduction	=	VMT _{REP} *	(EF _B -	$-EF_A$)

Class Exercise 1: Step 2

Look-up NOx emission rates

NO _x Emission	s Rates for 22 mph
2014	$EF_{B} = 8.6230$
2024	EF _A = 2.9531

2014			2024				
Average	NOx	Average	NOx	Average	NOx	Average	NOx
Speed	(grams/mile)	Speed	(grams/mile)	Speed	(grams/mile)	Speed	(grams/mile)
2.5	67.61180252	39	7.277778527	2.5	22.74472302	39	2.480097625
3	55.93208247	40	7.224916447	3	18.87541259	40	2.46065858
4	41.33243242	41	7.174630341	4	14.03877454	41	2.442166972
5	32.57264239	42	7.126738811	5	11.13679171	42	2.424555917
6	27.58011221	43	7.081074795	6	9.421119584	43	2.40776398
7	24.01401923	44	7.037486415	7	8.195639492	44	2.391735313
8	21.33944949	45	6.995835297	8	7.276529423	45	2.376419032
9	19.25922859	46	7.206000843	9	6.561666036	46	2.444424939
10	17.59505186	47	7.407223175	10	5.989775326	47	2.509536977
11	15.48740927	48	7.600061243	11	5.275996039	48	2.571936014
12	13.73104045	49	7.78502837	12	4.681179966	49	2.631788152
13	12.24488221	50	7.962596811	13	4.177874058	50	2.689246204
14	10.9710323	51	8.133202143	14	3.746468994	51	2.744451611
15	9.867029037	52	8.297245731	15	3.372584606	52	2.797533734
16	9.622665965	53	8.455098995	16	3.29018274	53	2.848612757
17	9.407051489	54	8.607105842	17	3.217475212	54	2.897799965
18	9.215394178	55	8.753585167	18	3.152846298	55	2.945198547
19	9.04391132	56	8.731095059	19	3.095020428	56	2.935624897
20	8.889576748	57	8.709394077	20	3.042977145	57	2.926387165
21	8.749938689	58	8.688441404	21	2.995889676	58	2.917467975
22	8.622995	59	8.668198992	22	2.953082887	59	2.908851131
23	8.507089892	60	8.648631327	23	2.913998427	60	2.900521515
24	8.400843543	61	8.792909359	24	2.878171005	61	2.946401453
25	8.303096902	62	8.932533261	25	2.845209777	62	2.990801392
26	8.21287253	63	9.067724658	26	2.814784467	63	3.03379181
27	8.129331444	64	9.198691325	27	2.786612883	64	3.075438778
28	8.051757579	65	9.325628247	28	2.760453555	65	3.1158043
29	7.979533636	66	9.462888792	29	2.736098319	66	3.159636241
30	7.912124623	67	9.596052008	30	2.713366766	67	3.202159765
31	7.82345249	68	9.725298659	31	2.6807592	68	3.243432598
32	7.740322365	69	9.850799029	32	2.650189607	69	3.283509117
33	7.66223043	70	9.972713675	33	2.621472717	70	3.322440593
34	7.588732138	71	10.15130263	34	2.594445055	71	3.38078222
35	7.519433748	72	10.32493078	35	2.568961832	72	3.437503246
36	7.453985459	73	10.49380199	36	2.544894442	73	3.492670272
37	7.392074915	74	10.65810911	37	2.522127993	74	3.546346296
38	7.333422821	75	10.81803472	38	2,500559778	75	3.598590961

Texas A&M Transportation Institute

Class Exercise 1: Step 3

Calculate the emission reduction

Daily Emission Reduction = $VMT_{REP} * (EF_B - EF_A)$

- = **VMT**_{REP} * (8.6230 2.9531)
- = 6,336 * 5.6699
- = 35,924 grams / day

VMT and NO_x Emission Rates $VMT_{REP} = 6,336 \text{ miles}$ $EF_B = 8.6230$ $EF_A = 2.9531$

Emission Reduction = 35.9 kg / day

CLASS EXERCISE

Using the MOSERS Guide Module 2 Emission Equations Class Participation

Class Exercise 2: Traffic Signalization for Corridors

Improved traffic flow

- Can improve interconnection and coordination of signals
- Reduce travel times, delays, and stops.

Application

• Implemented on major arterials and large capacity roadways

Class Exercise 2

A city is planning on retiming signals on one of their principal arterial corridors. The project will be completed in June 2024. Calculate NOx emission benefits using following information.

Traffic Information				
	AADT	=	30,000	
	Corridor Length	=	4 miles	
	Number of Signals	=	4	
Pe	ak hourly travel mix	=	6.77%	
Н	ours in peak period	=	6	
Speed before	Peak hour	=	17 mph	
implementation	Off-peak hour	=	39 mph	
Speed after	Peak hour	=	18 mph	
implementation	Off-peak hour	=	43 mph	

Class Exercise 2: Traffic Signalization for Corridors

Strategy 5.1 Equation

Daily Emission Reduction (grams/day) = A + B

Class Exercise 2: Coordinated Signals Variables

Strategy 5.1 Variables

Variables (unit)		Definitions
$\mathrm{EF}_{A, OP}$	(grams/mile)	Speed-based running exhaust emission factor during off-peak hours in affected corridor after implementation (NO _X , VOC, PM, or CO)
$\mathrm{EF}_{A, P}$	(grams/mile)	Speed-based running exhaust emission factor during peak hours in affected corridor after implementation (NO _X , VOC, PM, or CO)
EF _{B, OP}	(grams/mile)	Speed-based running exhaust emission factor during off-peak hours in affected corridor before implementation (NO _X , VOC, PM, or CO)
EF _{B, P}	(grams/trip)	Speed-based running exhaust emission factor during peak hours in affected corridor before implementation (NO _X , VOC, PM, or CO)
\mathbf{EF}_{I}	(grams/hour)	Idling emission factor (NO _X , VOC, PM, or CO)
L	(mile)	Length of corridor affected by signalization project
$\mathbf{V}_{D, OP}$		Average daily volume for the corridor during off-peak hours
V _{D, P}		Average daily volume for the corridor during peak hours

Source: Federal Highway Administration Southern Resource Center & Texas A&M Transportation Institute

Class Exercise 2: Step 1 Equation

Class Exercise 2: Step 1

Calculate peak hour volume

$$\mathbf{A} = \mathbf{V}_{D, P} * (\mathbf{E} \mathbf{F}_{B, P} - \mathbf{E} \mathbf{F}_{A, P}) * \mathbf{L}$$

V_{*D*,*P*} = **AADT** * **Peak Hour Mix** * **Hours in Peak Period**

- = **30,000** * **0.0677** * **6**
- = 12,186 vehicles per day

Traffic Information			
Average Daily Traffic (AADT)		=	30,000
Corridor Length		=	4 miles
Number of Signals		=	4
Peak hourly travel mix		=	6.77%
Hours in peak period		=	6
Speed before	Peak hour speed	=	17 mph
	Off-peak hour speed	=	39 mph
Speed after	Peak hour speed	=	18 mph
	Off-peak hour speed	=	43 mph

Class Exercise 2: Step 2 Equation

Class Exercise 2: Step 3

Calculate off-peak hour volume

$$\mathbf{B} = \mathbf{V}_{D, OP} * (\mathbf{E} \mathbf{F}_{B, OP} - \mathbf{E} \mathbf{F}_{A, OP}) * \mathbf{L}$$

V_{*D*,*OP*} = **AADT** – **Peak Hour Volume**

- = 30,000 12,186
- = 17,814 vehicles per day

	Traffic Information							
	AADT	=	30,000					
	Corridor Length	=	4 miles					
	Number of Signals	=	4					
	Peak hourly travel mix	=	6.77%					
	Hours in peak period	=	6					
Speed	Peak hour speed	=	17 mph					
before	Off-peak hour speed	=	39 mph					
Speed	Peak hour speed	=	18 mph					
after	Off-peak hour speed	=	43 mph					

Class Exercise 2: Step 4

Look-up NOx emission rates

	Emission Factors	
Speed before	Peak hour = 17 mph	EF _{B, P} = 0.0832
	Off-peak hour = 39 mph	EF _{B, OP} = 0.0702
Speed	Peak hour = 18 mph	EF _{A, P} = 0.0822
after	Off-peak hour = 43 mph	EF _{A, OP} = 0.0707

	Average Speed	NOx	Average Speed	NOx
	Average speed	(grams/mile)	Average speed	(grams/mile)
	2.5	0.1695	39	0.0702
	3	0.1527	40	0.0702
	4	0.1317	41	0.0704
	5	0.1191	42	0.0706
	6	0.1107	43	0.0707
	7	0.1047	44	0.0709
	8	0.1002	45	0.0711
	9	0.0967	46	0.0716
	10	0.0939	47	0.0720
	11	0.0916	48	0.0725
	12	0.0897	49	0.0729
	13	0.0881	50	0.0733
	14	0.0867	51	0.0739
	15	0.0855	52	0.0746
	16	0.0843	53	0.0752
	17	0.0832	54	0.0758
	18	0.0822	55	0.0763
	19	0.0813	56	0.0772
	20	0.0806	57	0.0780
	21	0.0795	58	0.0788
	22	0.0785	59	0.0796
	23	0.0776	60	0.0804
	24	0.0768	61	0.0818
	25	0.0760	62	0.0832
	26	0.0749	63	0.0846
	27	0.0738	64	0.0859
	28	0.0728	65	0.0872
	29	0.0718	66	0.0902
ľ	30	0.0709	67	0.0931
ľ	31	0.0708	68	0.0960
	32	0.0706	69	0.0988
Ĩ	33	0.0704	70	0.1015
	34	0.0703	71	0.1057
ľ	35	0.0701	72	0.1098
ľ	36	0.0701	73	0.1137
ľ	37	0.0701	74	0.1176
ľ	38	0.0701	75	0.1214

Class Exercise 2: Step 5

Calculate total NOx emission benefits

 $\mathbf{A} = \mathbf{V}_{D, P} * (\mathbf{E}\mathbf{F}_{B, P} - \mathbf{E}\mathbf{F}_{A, P}) * \mathbf{L}$

A = 12,186 * (0.0832 – 0.0822) * 4 A = 48.744

 $\mathbf{B} = \mathbf{V}_{D, OP} * (\mathbf{E} \mathbf{F}_{B, OP} - \mathbf{E} \mathbf{F}_{A, OP}) * \mathbf{L}$

B = 17,814 * (0.0702 - 0.0707) * 4 B = -35.628

Emission Factors								
Speed	Peak hour	=	17 mph	$EF_{B, P} = 0.0832$				
before	Off-peak hour	=	39 mph	EF _{B, OP} = 0.0702				
Speed	Peak hour	=	18 mph	EF _{A, P} = 0.0822				
after	Off-peak hour	=	43 mph	EF _{A, OP} = 0.0707				

A + B = 48.744 - 35.628A + B = 13.1 grams / day

Emission Reduction = 0.0131 kg / day

Questions and Comments

MOSERS Training – Part 6

MOSERS SPREADSHEET TOOL AND WEB EDITION

- Macro-enabled and Excel-based
- Automated
- Estimates changes in vehicles activity
- Two menu types
- Grouped by strategy type
- Navigation buttons
- Ten active strategies

Transit Trips

Transit VM

Transit trips during off-peak hours (two-way)

Daily transit VMT

- Navigation and action buttons
- User input is limited to white cells
- Drop-down lists
- Average Texas state-wide default values are available for some inputs
- FHWA's Highway **Capacity Manual** Equations

	Sa	ive repo	rt as PDF						
urn to Menu				View I	report /	on s	creen		documenta
MOSEF MObile S	S ource Emis	sion Reductior	Strategies						Texas A&M Transportation Institute
Strategy 1.1	L - Transit S	ystem/Service	Report as PDF	View Rep	ort	PS	Project Inform Variable	ation Value	Open Strategy Documentation
Region	Metropolitan	area	mpat bata	Tressilen	c to ticur input vulu		Select V	Dallas/ Fort Worth	-
N-g-C-					/		C.1	2022	
rear Read Type	Analysis year	I with contricted or uproat	isted access				Select V	2023	-
Now Transit	Type of powrt	ransit service	Go to	nroiect	inform	ation	Select V	Light Pail (Electric)	-
New Hansic	Proposed ave	ransic service		project	monn	ation	. Энесл • Н	Light Kan (Liectric)	minute (vehicle
Headway	Proposed ave	rage headway during pea	ask bours				H _{BUS,P}		minute / vehicle
	Proposed ave	way transit corridor lang		TION OF	strated	עג	I BUS, OP		mile
Distance	Average one-	way auto trin length within	the buffer distance of new transit		•	,,	Laus		mile
	Proposed ser	vice hours during neak ner	iod of the day				2.4 h-		bour
Service Hour	Proposed ser	vice hours during off-peak	period of the day				her		hour
	Estimated typ	pical daily transit ridership					R		rider
Ridership	Percentage o	f transit riders who were a	uto drivers				5		percent
	Estimated tra	insit speed along the corri	dor during peak hours				- KA		mph
	Current auto	average speed along the c	orridor during peak hours				V 4 P		mph
Speed	Estimated tra	insit speed along the corri	dor during off-peak hours				VROP		mph
	Current auto	average speed along the c	orridor during off-peak hours				VAOP		mph
			Default Data			Default	Variable	Value	Units
0		Average auto occupan	εγ			1.13	0,	1.13	persons / vehicle
Occupancy		Carpool occupancy				2.31	0 _c	2.31	persons / vehicle
Carpool Percenta	ge	Percentage of transit r	iders who were auto drivers were al	so carpooled		50	₽ _C	50	percent
Daily Ridership Di	stribution	Peak hour ridership fa	tor			0.1203	\mathbf{F}_{P}	0.1203	-
			Columbra d Data				Madahi	Malua	
	011	and the first state of the stat	Calculated Data				Variable	Value	Units
	Off-peak hour	ridership factor	h				F _{OP}	-	-
Ridership	Estimated tra	insit ridership during peak	nours				R _p	-	person
	Estimated tra	insit ridership during off-p	eak nours				R _{OP}	-	person
	Estimated typ	oical day transit ridership					K	-	person
Transit Trins	Transit trips o	during peak hours (two-wa	()				VT _{BUS,P}	-	trips / day

VT_{BUS,OP}

WAT

trips/day

Input Data section

	Press to clear all input values			t indicates di	rop-down list f
	Input Data 🦷	Press here to clear input values) Variable	Value	Units
Region	Metropolitan area		Select 🔻 🖌	Dallas/ Fort Vorth	•
Year	Analysis year		Select 🔻	2018	•
Road Type	Urban or rural with restricted or unrestricted access		Select 🔻	Urban-Freeway	-
	Area type		Select 🔻	Urban	-
	Corridor length		L	10.0	mile
Facility Geographic Information	Facility type		Select 🔻	Freeway	•
	Peak time of the day		Select 🔻	Morning Peak Only	-
Facility Existing Traffic Information	Annual average daily traffic along the facility		-	100,000	vehicles / day
General Purpose Lane	Number of general purpose lanes		Nier	3	lane
HO¥ Lane	Number of additional HOV lanes		N.mrs	1	lane
				/	

White cells for require user input

Default Data section

			↓				
		Default Data	Default	Variable 🛛	¥alue	Units	Resto
Dof sult Oouu		General purpose lane auto occupancy	1.13	0	1.13	person	Rest
Derault Ocuu	ipancy	HOV lane auto occupancy	2.31	0,4	2.31	person	Rest
Existing Facil	lity Traffic	Volumes of peak hours	2,256 **	View	2,256	vehicles / lane / hour	
nformation Peak-hour hourly traffic volum		Peak-hour hourly traffic volume	6,769 **	Vent	6,769	vehicles / hour	
Default Servi	ice Hours	Peak service hours per day	3	N ₂₂	3	hour	
	Capacity	Facility capacity	2,231 **	С	2,231	vehicles / Iane / hour	
	Free Flow Speed	Facility free flow speed	60 **	Verseller	60	mph	
Default Traffic Constant	Hign- Occupancy Vehicles	Percent of high-occupancy vehicles along the facility	20	Panty con	20	percent	
	V/C Batio	Projected HOV lanes volume/capacity ratio	0.90	WC,	0.90	-	
-	¥olume Reduction Term	General purpose Lane volume reduction compared to additional HOV capacity	0.95	Fs	0.95	•	
		Delay calculation term A	0.015 **	A	0.015	minutes / mile	
Default Delay	Function Terms	Delay calculation term B	3.5 **	В	3.5	minutes / mile	
		Delay calculation term M - maximum minutes of delay per mile	1 "	M	1 🖌	minutes / mile	

Default value restores to this value

Double asterisk (**) indicate that the default value is dependent on other selections.

White cells in this section are populated with Texas default values. Project-specific input is optional.

Restore default value buttons

Calculated Data Section

No data entry required

		Calculated Data	Yariable	¥alue	Units
	Volume	General purpose lane vehicle volume - before	م,∞,۷	6,769	vehicles / hour
	Tolulle	General purpose lane vehicle volume - after	س,∞ ۷	5,483	vehicles / hour
	Yolume Y/C Ratio Delay Delay Speed Travel Time YMT Yolume YMT Delay Travel Time YMT Delay Travel Time Yolume YMT Delay Speed Travel Time Speed Travel Time	General purpose Iane V/C ratio - before	V/C _{int} e	1.01	
TC Na	FIC NAUO	General purpose lane V/C ratio - after	V/C _{620,0}	0.82	-
	Dalar	General purpose lane delay - before	م _م ر ش D	5.17	minute / vehicle
General	Delay	General purpose lane delay - after	D _w w	2.64	minute / vehicle
Purpose Lane	Speed	General purpose lane speed - before	م,∞,۷	39.55	mph
Calculation	opeed	General purpose lane speed - after	V. as V	47.47	mph
	Travel Time	Travel time under free-flow conditions	TTerretter	10.00	minute
		General purpose lane travel time - before	م صلح TT	15.17	minute
		General purpose lane travel time - after	TT w.w.	12.64	minute
	VLAT	Daily peak hour general purpose lane VMT - before	۷MT _e	203,084	-
	TP11	Daily peak hour general purpose lane VMT - after	VMT.,	164,498	-
	Yolume	Additional HOV lane volume	V _{#M}	1,354	vehicles / hour
	YMT	Daily peak hour HOV lane VMT	VMT ₂₀₁₂	40,617	•
	Delay	HOV lane delay - after	D#	3.50	minute / vehicle
Calculation	Speed	HOV lane speed - after	V,#	44.44	mph
Calculation	Travel Time	HOV lane travel time - after	TT	13.50	minute
	Trip Reduction	Reduction of trips per hour	VT _{R Mee}	1,414	trips / hour

Activity Output Data Section

No data entry required

		Activity Output Data	Yariable	Yalue	Units
Peak Hour Sun	nmary	Number of peak hours (AM and/or PM)	New	3	hour
Facility Length		Length of HOV facility	L	10.0	mile
HOV Lane	Peak-hour Volume	Average hourly volumes on HOV lanes during peak hours	٧؊	1,354	vehicles / hour
Summary	Speed	HOV lane speed (mph) - after	Vanista	44	mph
	Cread	General purpose lane speed during peak hours - before	م,∞,∨	40	mph
General Durana da la cara	speed	General purpose lane speed during peak hours - after	س من ۷	47	mph
Purpose Lane	Peak-hour	Average hourly volumes on general purpose lanes during peak hours - after HOV facility	V _{cons}	5,483	vehicles / hour
Sammary	Yolume	Average hourly volumes on general purpose lanes during peak hours - before HOV facility	V ann	6,769	vehicles / hour
Reduction in	Trip Reduction	Reduction in number of daily auto trips	VT ₈	4,241	trip
Activity	YMT Reduction	Reduction in number of daily auto VMT	VMT ₈	42,414	-

Daily Emissions Reduction Section

	Daily Emissions Reduc	tion						
Description	V:-LI_		Pollutant					11
Description	Variable		NOz	VOC	PM ₁₀	CO	COz	Onits
Dails Emissions Reduction	A + B + C + D		12.220	7.279	0.336	307.701	30,398	kg∤day
Daily Emissions neduction	ATDTCTD		26.941	16.048	0.740	678.364	67,015	lbs / day
		Emissio	n Factors					
Di		Variable			Pollutant			Unite
D.	Description		NOz	VOC	PM ₁₀	CO	CO2	Units
Speed-based running exhaust emissio implementation	n factor for affected roadway before	وEF	0.133663	0.047247	0.003686	2.196545	344.181282	grams ł mile
Speed-based running exhaust emission factor on general purpose lanes after implementation of HOV facility(estimate)		ef _{دە}	0.138185	0.042981	0.003627	2.094511	332.072809	grams ł mile
Speed-based running exhaust emission factor on HOV facility (estimate)		EF _{%N}	0.136875	0.044684	0.003676	0.003676	337.620301	grams ł mile
Auto trip-end emission factor		TEF	0.534719	0.623872	0.006347	5.641842	61.427855	grams / trip

Section with emission factors loaded

Section with emission factors NOT loaded

Emission Calculations Section

No data entry required

Emission Calculations								
	Variable			Pollutant			Unite	
	vallable	NOz	VOC	PM ₁₀	CO	CO2	Units	
Change in running exhaust emissions from vehicles shifting from general purpose lanes to HOV lanes	A = V _{M,A} * (EF _F - EF _{M,A}) * N _{FM} * L	-130.456	104.133	0.375	89,067.268	266,486	grams I day	
Change in running exhaust emissions of vehicles in general purpose lanes as a result of vehicles shifted away from general purpose lanes	B = (V _{6P,F} * EF _F - V _{6P,A} * EF _{6P,A}) * N _{PH} * L	4,413.581	2,524.889	151.945	101,540.158	15,272,381	grams / day	
Reduction in auto start exhaust emissions from trip reductions	C = VT _S • TEF _{AUTO}	2,267.957	2,646.088	26.919	23,929.304	260,540	grams / day	
Reduction in auto running exhaust emissions from trip reductions	D = VMT _{&} • EF _{&}	5,669.180	2,003.948	156.325	93,164.230	14,598,102	grams / day	

Project Information

- 1. Return to input section
- 2. Project Title
- 3. Project Location
- 4. Project Location
- 5. Analysis Year
- 6. Metro Area
- 7. County
- 8. Project Description

MOSERS MObile Source Emission Reduction	Strategies	Texas A&M Transportation Institute	
Strategy 1.1 - Transit System/Service	e Expansion Report as PDF View Report	Go To Data Input Open Strategy Documentation	C
	Project Information		
Project Title: 2			
Project No./ CSJ:			
Project Location:			
Analysis Year: 2023 5	Metropolitan Area: Dallas/ Fort Worth 6	County v (optional):	
Project Description:			

Pre-formatted PDF

The MOSERS spreadsheet tool version/date of release

Strategy number and name

Strategy report creation date and time. This date and time coincides with the default naming used in the <u>Save Report as PDF</u> button function

Strategy report page number

obile Source Emission Reduction Strategies Reduction Strategies Source Emission Reduction Strategies ad Data MOSERS Mobile Source Emission Reduction Strategies Value Units Proiect Title: Not Provided 380 VMT Austin 15,200 VMIC 1.140 Project Type: Bicycle and Pedestrian Programs (Oction 1) 2014 Rural-Arterial Summary of Estimated Project Emission Benefits 1.000 household Air Emission Compound Reduction in Kg/day Nitrogen Oxides (NO_x) 9.855 VMI_R Volatile Organic Compounds (VOCs) 3,727 16.340 50 percent Particulate Matter (PM10) 0.114 Carbon Monoxide (CO) 80.348 Carbon Dioxide (CO₂) 6,191 20 percent Estimated Project Emission Redutions Due to Strategy 2 tute's on-line data server. This MOSERS trip eneral air quality conformity for criteria 1 trip articipants' trip before participating in 8 mile 3 mile PI/110 00 71 mph Project Number: Not Provided Analysis Year: 2014 56 mph Project Location: Not provided Metro Area: Austin County: 1.9 Units Strategy: 3.2 Bicycle and Ped - Option 1 id Ped - Option 1 Generated 7/13/2020, 6:11 PM 13/2020, 6:11 PM rategy: 3.2 Bicycle and Ped - Option 1 Texas Department of Transportation Strategy: 3.2 Bicycle and Ped - Option 1 Generated 7/13/2020, 6:11 PM Page 4 of 4 Release: AIC-21853-D MOSERS Tool Draft - July 2020 Generated 7/13/2020, 6:11 PM Page 3 of A Page 2 of 4 https://txaqportal.org/mosers_strategies/ Page 1 of 4

Copyright Statement © 2020 Texas A&M Transportation Institute | Comments, suggestions, or queries? Contact us!

8	Texas Air Quality Portal	(+)					— (×
<i></i>	→ C 🔒 txaqportal.org/n	nosers_strategies					☆	θ	
	ا اللہ الم	ome 🚚 Conformity	🖻 Mosers 💷	Training 🎯 Analytics	🗅 Reports 🌐 TWG	 About Us 			^
	Air Quality	S y Portal							
				Ø					
	MOSERS Overview	MOSERS Guidebook	MOSERS Tool	MOSERS Strategies	Archived Documentation				
	MObile Source Em	issions Reduction Str	ategies (MOSER	S)					
	The Texas Guide to Accepte	ed Mobile Source Emission Rec	uction Strategies (comm	nonly known as MOSERS Guid	e) is a set of reference				
	MOSERS Guide is to provid emissions reduction strateg	le guidance and resources for t gies. The MOSERS guide was o	ransportation air quality iginally developed by T	y practitioners to understand a TI in 2003 and updated subsec	g. The intent of the ind evaluate mobile source quently in 2007.				
	The 2007 version of the MC Stakeholders. It is a compre	DSERS Guide is the current vers chensive guidebook covering a	ion that has been form n introduction to transp methods and equation	ally adopted by the TWG and T portation air quality, an overvie	Texas Air Quality w of accepted mobile				
	version of the MOSERS Gui and published in August 20	de which will replace the 2007 20.	version of the is current	tly under development and is e	expected to be adopted				

TTI is also developing a MOSERS spreadsheet tool with built-in equations capable of estimating activity reductions and emissions changes for a select set of strategies. The current draft version of the MOSERS tool provides includes 10 strategies and emissions rates for 7 metropolitan areas (A, B, C...). TTI is actively adding strategies to the MOSERS tool based on input from TWG stakeholders.

C A	Portal X	+ mosers strategies				*
A A A A A A A A A A A A A A A A A A A	Texas Air Qualit	ome a Conformity S ty Portal	P Mosers 🗉	Training 🛞 Analytics	🖹 Reports 🌐 TWO	G (i) About Us
MOSE	द्ध RS Overview	E MOSERS Guidebook	L MOSERS Tool	© MOSERS Strategies	Archived Documentation	
	Module 1 - Module 1 prov conformity, mo	Overview of Transpo vides an overview of transpo obile source emissions mod	ortation Air Quality ortation and air quality plar eling, and transportation c	nning, and discusses key topics ontrol measures.	relating to federal regulations, t	႕ ဇိ
	Module 2 -	Methodologies				م. ۱

8	Texas	Air Qual	ity Portal	×	+									-	o x
←	\rightarrow	C	🗎 txaqd	lev.netlify.ap	p/mosers									\$	• • •
		UAL	TY	습 Hom	ne é	Conformity	🖹 Mosers	💷 Tra	ining 🏾 🎯	Analytics	🖹 Repor	ts 🌐 TWG	(i) Abo	out Us	^
			PR TAL	Texas											
		TE	AS	Air Quality	Portal										
			R			8			0						
		MOS	ERS Over	rview	MOSE	RS Guidebook	MOSERS	Tool	MOSERS St	rategies	Archived D	ocumentation			
			The	Tawaa Cu	ida ta	A second and MA	abila Course) a alve ati a u	Ctuataniaa	(2nd Edition	-)		1 ~	
			This	auidebook i	s an upda	Accepted IVI ated reference for	on new and exper	ienced technic	cal staff in me	tropolitan are	eas undertaking	1) transportation/aii	r quality	ц v	
		P	plan	ning to bette	er unders	tand and utilize	mobile source er	mission reduct	ion strategies	as they seek	to achieve attai	nment for NAAQS	5. It is also		
		<u></u>	inter aual	nded to serve litv issues. Th	e as an in e quide r	troduction for to provides an over	ransportation pro view of the trans	fessionals in n portation/air c	iew nonattain quality relatio	iment areas w nship, along v	vith little or no e with specific det	xperience in trans ails about mobile	portation/air source		
			emis	ssion reduction	on strateg	gies, and serves	several functions								
		B	Gui	idebook lı	mprove	ement Proce	SS							⊥ ≪	
			A pr	ocess diagra	m descrik	ping how to imp	orove the MOSER	S guidebook							
		P	Inti	roduction	Memo	randum (20	07)							$\perp \ll$	
			Tran	smittal of "Tł	he Texas (Guide to Accept	ed Mobile Source	e Emission Red	luction Strate	gies, 2nd Edit	tion"				
														1	•

	× (+								_
🖰 🔒 txaq	dev.netlify.app/mosers								☆
ALITY	යිHome 🚚	Conformity	🖹 Mosers 💷	Training 🍙	Analytics [B Reports	⊕ TWG	About U	s
	Texas								
TEXAS	Air Quality Portai								
R	E	1	묘	۵					
MOSERS Ove	erview MOSERS G	uidebook	MOSERS Tool	MOSERS Strate	egies /	Archived Docun	nentation		
equation	ns used, is include	d.	A					19 1	
equation	ns used, is include	d.	A	rations Vo		Ta ala su c	Tenual D	<u>Al</u> t	
equation	ns used, is include	d. n Infra	astructure & Traffic Ope	rations Ve	ehicle Activity &	Technology	Travel D	Demand Manager	nent
equation Transit	ns used, is include	d. n Infra	astructure & Traffic Ope	rations Ve em/Service Ex	ehicle Activity &	Technology	Travel D	emand Manager	ment
equation Transit	ns used, is include	d. In Infra Vements	astructure & Traffic Ope	rations Ve em/Service Ex providing new rail sy	ehicle Activity & Acti	Technology id/or expanding	Travel D g bus services.	Demand Manager	ment
equation Transit	ns used, is include	d. in Infra vements	astructure & Traffic Ope 1.1 Transit Syste Increase ridership by p Description	rations Ve em/Service Ex providing new rail sy	ehicle Activity & services ar	Technology Id/or expanding	Travel D g bus services.	Demand Manager	ment
equation Transit	ns used, is include	d. in Infra vements	astructure & Traffic Ope 1.1 Transit Syste Increase ridership by p Description Expansion of a trans	rations Ve em/Service Ex providing new rail sy sit system or service	chicle Activity & chicle Activ	Technology Id/or expanding addition of rail	Travel D g bus services.	Demand Manager	ment

` ≪

txaqdev.netlify.app/mosers				☆ €
🛄 💍	A		<u>.</u>	
Transit Bicycle & Pedestrian	Infrastructure & Traffic Operations	Vehicle Activity & Technology	Travel Demand Management	
.1 Transit System/Service Expansion .2 System/Service Operational Improvements	1.1 Transit System/Serv Increase ridership by providing ne	vice Expansion w rail system services and/or expanding	bus services.	
	Description Expansion of a transit system o services through increased freq paratransit services can be expa extensions. Application Large cities or communities wit reasonably frequent transit serv	r service can include the addition of rail juency or route extension. Bus or anded with new vehicles and/or route th enough population density to support <i>v</i> ice.		
	Emissions Equations Daily Emission Re	Activity Equations Resources $eduction \ (grams/day) = A + A$	B - C - D	
	$A = VT_{R,P} \times TE$ Reduction in auto start emi $B = VMT_{R,P} \times F$	$F_{AUTO} + VT_{R,OP} \times TEF_{AU}$ issions from trips reduced	TO Futto op	
	$C = VT_{PUC, D} \times T$	exhaust emissions from VMT reductions $FEF_{DIIS} + VT_{DIISOP} \times TE$	Fpus	
	Increase in emissions from	additional bus starts	- BUS	
	$D = V M T_{BUS,P}$ > Increase in emissions from	$\times EF_{BUS,P} + VMT_{BUS,OP}$ additional bus running exhaust emission	× EFBUS,OP	

S Te

s Air (Quality Portal	× +			-		×
G	🗎 txaqde	v.netlify.app/mosers			\$	Θ	:
		ోం	A		1		
	Transit	Bicycle & Pedestrian	Infrastructure & Traffic Operations	Vehicle Activity & Technology	Travel Demand Management		
	1.1 Transit Sys	stem/Service Expansion	117	_ ·			
			1.1 Transit System/Servi	ce Expansion			
	1.2 System/Sei	rvice Operational Improvements	Increase ridership by providing nev	v rail system services and/or expanding	bus services.		
			Description				
			Expansion of a transit system or	service can include the addition of rail			
			services through increased frequ	iency or route extension. Bus or			
			extensions.	nded with new vehicles and/or route			
			Application				
			Large cities or communities with	enough population density to support			
			reasonably frequent transit servi	ce.			
			Emissions Equations	Activity Equations Resource	5		
			$V_{GPL,B} = V_{Lane} \times .$	N _{GPL}			
			$V_{S,A} = V_{Lane} imes N_S$	$\times V/C_S$			
			$V_{GPL,A} = V_{Lane} \times .$	N _{GPL}			
			$V/V_{GPL,B} = rac{V_{GPL,B}}{C}$				
			Methodology and assumpt	ions			
			The calculator is designed to eva	aluate the benefits of providing corridor			
			level new transit service, and the	area-wide or system-wide			
			each corridor together. It estimated	by summing the individual benefits of ates the daily activity benefits including			

CLASS EXERCISE

Using the MOSERS Guide Spreadsheet Tool Instructor Demonstration

Class Exercise 3: Idling Controls on H-D Vehicles

Idling Restrictions

- Reduced vehicle emissions
- Reduced fuel cost
- Implemented manually or through vehicle modifications

Application

 Medium-sized and large urban areas with a significant number of heavy-duty vehicles operating in the area

Austin is planning to implement extended vehicle idling restrictions for hotelling of heavy-duty trucks within the metropolitan area. The restrictions will be implemented area beginning in the 2023.

Calculate the emission benefits using following information.

Project Information	
Number of facilities in the plan	= 8 facilities
Existing number of heavy-duty vehicles per facility	= 200 vehicles
Existing average idle time per vehicle per day	= 480 minutes
Maximum idling time per vehicle per day allowed by restriction	= 240 minutes
Compliance factor (percent of vehicles that do not idle)	= 60 percent

Strategy 10.2 Extended Vehicle Idling Controls on Heavy-Duty Vehicles

Project InformationNumber of facilities in the plan=8 facilitiesExisting number of heavy duty vehicles per facility=200 vehiclesExisting average idle time per vehicle per day=480 minutesMaximum idling time per vehicle per day allowed by restriction=240 minutesCompliance factor (percent of vehicles that do not idle)=60 percent

		Input Data	Press here to clear input values	Variable	Value	Units						
Region		Metropolitan area		Select 🔻	Austin	-						
Year		Analysis year			Analysis year			Analysis year			2023	-
Facility Description		Facility type	Select 🔻	Rest Area	-							
	Number of Vehicles	Existing daily number of heavy-duty vehicles per facility	Existing daily number of heavy-duty vehicles per facility									
Extended Vehicle	Existing Idling	Existing average idle time per vehicle per day		t	480	minute						
ining i duirty	Number of Facilities	Number of existing facilities in plan to reduce idling time			8	facility						
Idling Control	Idling Control	Maximum idling time expected to be allowed per vehicle by the control			240	minute						
	Compliance Factor	Compliance factor (percentage of vehicles that park instead of	F _{PARK}	60	percent							

	Calculated Data	Variable	Value	Units
Number of Vehicle Calculation	Existing daily number of heavy-duty vehicles per facility	-	200	heavy-duty vehicle

		Activity Output	Variable	Value	Units
Idling Summary	Idling Before Implementation	Total idling time spent before implementation of control per vehicle per day		8.00	hour
	Idling After Implementation	Total idling time spent after implementation of control per vehicle per day	t₄	4.00	hour
Number of Vehicles		Total number of vehicles	Nŗ	1,600	vehicle

Daily Emissions Reduction									
Description	Variable		Pollutant						Haute
Description	Variable		NOx	VOC	PM ₁₀	со	CO2		Units
Daily Emissions Roduction	A * B		17,246.612	2,964.669	102.137	8,227.661	834,722	kg / day	
Daily Emissions Reduction		38,022.226	6,535.968	225.173	18,138.867	1,840,244	lbs / day		

Emission Factors									
Description	Variable			Pollutant			Unite		
Description		NOx	VOC	PM ₁₀	со	CO2	Units		
Idling emission factor for trucks	EFI	187.137719	32.168714	1.108257	89.275839	9,057.309570	grams / hour		

Emission Calculations								
	Variable			Linita				
	Vallable	NO _x	VOC	PM ₁₀	со	CO2	Units	
The number of vehicles in compliance with idling restrictions	$\mathbf{A} = \mathbf{N}_{\mathrm{V}} * \mathbf{F}_{\mathrm{PARK}}$	960.000	960.000	960.000	960.000	960	vehicles / day	
The reduction in idling exhaust emissions from reduced time spent in idling	$\mathbf{B} = \mathbf{E}\mathbf{F}_{\mathrm{I}} * (\mathbf{t}_{\mathrm{B}} - \mathbf{t}_{\mathrm{A}})$	17,965.221	3,088.197	106.393	8,570.481	869,502	grams / vehicle	

CLASS EXERCISE

Using the MOSERS Guide Spreadsheet Tool Class Participation

Corpus Christi is planning to implement trip reduction program within the metropolitan area. The programs will be implemented area beginning in the 2022.

Calculate the emission benefits using following information.

Project Information						
Road type	=	Urban-Freeway				
Total employment (site-wide or area-wide)	=	10,000 employees				
Average home-based vehicle work trip distance	=	9 miles				
Current trip mode shares of home-based work trip - SOV	=	60 percent				
Expected percent of SOV drivers to participate bike/ped program	=	10 percent				
Expected percent of SOV drivers to participate transit program	=	20 percent				
Expected percent of SOV drivers to participate rideshare program	=	10 percent				

Strategy 4.2 Trip Reduction Programs

Project Information							
Road type	=	Urban-Freeway					
Total employment (site-wide or area-wide)	=	10,000 employees					
Average home-based vehicle work trip distance	=	9 miles					
Current trip mode shares of home-based work trip - SOV	=	60 percent					
Expected percent of SOV drivers to participate bike/ped program	=	10 percent					
Expected percent of SOV drivers to participate transit program	=	20 percent					
Expected percent of SOV drivers to participate rideshare program	=	10 percent					

		Input Data (Press here to clear input values	Variable	Value	Units
Region		Metropolitan area		Select 🔻	Corpus Christi	-
Year		Analysis year		Select 🔻	2021	-
Road Type		Urban or rural with restricted or unrestricted access		Select 🔻	Urban-Freeway	-
Employment		Total employment (site-wide or area-wide)			10,000	employee
	Distance	Average home-based vehicle work trip distance per employee		L	5	mile
Trip Information	Mode Share	Current trip mode shares of home based work trip - single occ	psov	40	percent	
	Speed	Average speed of home-based work trips		v	35	mph
	Bike/Ped Participants	Expected percentage of SOV drivers to be participants in the bike/pedestrian program			10	percent
Trip Reduction Program Information	Transit	Expected percentage of SOV frivers to be participants in the public transit program		P Transit	20	percent
	Rideshare	Expected percentage of SOV drivers to be participants in the rideshare program		PRideshare	10	percent

Default Data		Default	Variable	Value	Units
Occupancy	Rideshare auto occupancy	2.31	O _{Rideshare}	2.31	rider

Calculated Data				Value	Units
Participants Calculation	Bike/Ped Participants	Number of bike/pedestrian program participants		600	participant
	Transit	Number of public transit program participants	N _{Transit}	1,200	participant
	Rideshare	Number of rideshare program participants	N _{Rideshare}	600	participant
		Number of single occupancy vehicle trips of rideshare program participants	VT _{Ridershare}	681	trip
		Number of rideshare trips of rideshare program participants	VT _{Transit}	2,400	trip
		Number of rideshare trips of rideshare program participants	VT _{B/P}	1,200	trip

Activity Output Data			Value	Units
Trip Summary	Reduction in number of daily auto vehicle trips	VTR	4,281	less vehicle trip
VMT Summary	Reduction in number of daily auto vehicle miles traveled	VMT _R	38,525	less
Participants Summary	Number of participants	N _P	2,400	participant
Speed Summary	Average speed of home-based work trips	v	35	mph

Daily Emissions Reduction									
Description	Variable		Pollutant					Unite	
Description	Variable		NOx	VOC	PM ₁₀	со	CO2	Units	
Daily Emissions Reduction	A + B	5.568	4.242	0.164	125.574	12,875	kg / day		
		12.275	9.352	0.361	276.842	28,385	lbs / day		

Emission Factors									
Description	Variablo		Unite						
Description	Valiable	NOx	VOC	PM ₁₀	CO	CO2	Onits		
Speed-based running exhaust emission factor for affected roadway before implementation during peak hours	EF _B	0.093447	0.042201	0.003518	2.642612	327.8307	grams / mile		
Auto trip-end emission factor	TEF _{AUTO}	0.459742	0.611215	0.006546	5.552591	57.4129	grams / trip		

Emission Calculations								
	Variable –			Unite				
		NOx	VOC	PM ₁₀	со	CO2	Units	
Reduction in auto start emissions from trips reduced	$\mathbf{A} = \mathbf{VT}_{R} * \mathbf{TEF}_{AUTO}$ (trips * grams / trip)	1,967.933	2,616.319	28.018	23,767.975	245,757	grams / day	
Reduction in auto running exhaust emissions from VMT reductions	$\mathbf{B} = \mathbf{VMT}_{R} * \mathbf{EF}_{AUTO}$ (vehicle miles * grams / mile)	3,600.024	1,625.795	135.523	101,805.759	12,629,570	grams / day	

Questions and Comments

Final Thoughts

Welcome suggestions and recommendations to improve

New information will be included when available

New methodologies will be added

Continual improvement of content and user experience

Contact Information

Reza Farzaneh, Ph.D., P.E.

Program Manager Air Quality Program Texas A&M Transportation Institute Email: <u>R-Farzaneh@tti.tamu.edu</u> Office: (512) 407-1118 | Fax: (512) 467-8971

Robert Huch, P.G., CPESC

Research Specialist Air Quality Program Texas A&M Transportation Institute Email: <u>R-Huch@tti.tamu.edu</u> Office: (512) 407-1133 Fax: (512) 467-8971

Madhusudhan Venugopal, P.E.

Associate Research Scientist Transportation Modeling Program Texas A&M Transportation Institute Email: <u>M-Venugopal@tti.tamu.edu</u> Office: (817) 462-0523 Fax: (817) 461-1239

http://tti.tamu.edu/group/airquality/

Thank you

Emission Trends

Activity Trends

Resources

FHWA

https://www.fhwa.dot.gov/environment/air_quality/cmaq/toolkit/index.cfm, http://www.fhwa.dot.gov/environment/air_quality/conformity/research/mpe_benefits/ , http://www.fhwa.dot.gov/environment/air_quality/conformity/research/transportation_control_m easures/tcm3.cfm https://www.fhwa.dot.gov/environment/air_quality/cmaq/training/ https://www.fhwa.dot.gov/environment/air_quality/cmaq/research/cmaq_cost.cfm https://www.fhwa.dot.gov/environment/air_quality/cmaq/reference/cost_effectiveness_tables/ https://www.fhwa.dot.gov/environment/air_quality/conformity/methodologies/moves.cfm

TxDOT

http://www.txdot.gov/inside-txdot/division/environmental/compliance-toolkits/air-quality.html

Resources

EPA

https://www.epa.gov/state-and-local-transportation/matrix-epa-guidancedocuments-developing-and-quantifying-control, http://www.epa.gov/otaq/stateresources/transconf/policy/420b14007.pdf, http://www.epa.gov/otaq/stateresources/transconf/policy/truckidlingguidance.pdf https://www.epa.gov/state-and-local-transportation/transportation-conformity http://www.fhwa.dot.gov/environment/air_quality/conformity/research/transportation_control_measures/tcm3.cfm

TCEQ

https://www.tceq.texas.gov/airquality/sip/

